DOI QR코드

DOI QR Code

A Study on Morphology Control of (Ga1-xZnx)(N1-xOx) Nanofibers according to the Composition and Crystallinity of Oxide Nanofibers Synthesized by Electrospinning

전기방사로 합성된 산화물 나노섬유의 조성 및 결정화도에 따른 (Ga1-xZnx)(N1-xOx) 나노섬유의 형상 제어 연구

  • Kim, Jeong Hyun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 김정현 (서울과학기술대학교 신소재공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과) ;
  • 이영인 (서울과학기술대학교 신소재공학과)
  • Received : 2021.06.17
  • Accepted : 2021.06.27
  • Published : 2021.06.28

Abstract

The (Ga1-xZnx)(N1-xOx) solid solution is attracting extensive attention for photocatalytic water splitting and wastewater treatment owing to its narrow and controllable band gap. To optimize the photocatalytic performance of the solid solution, the key points are to decrease its band gap and recombination rate. In this study, (Ga1-xZnx)(N1-xOx) nanofibers with various Zn fractions are prepared by electrospinning followed by calcination and nitridation. The effect of the composition and crystallinity of electrospun oxide nanofibers on the morphology and optical properties of the obtained solid-solution nanofibers are systematically investigated. The results show that the final shape of the (Ga1-xZnx) (N1-xOx) material is greatly affected by the crystallinity of the oxide nanofibers before nitridation. The photocatalytic properties of (Ga1-xZnx)(N1-xOx) with different Ga:Zn atomic ratios are investigated by studying the degradation of rhodamine B under visible light irradiation.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education (NRF-2018R1D1A1B07048149).

References

  1. X. Chen, S. Shen, L. Guo and S. S. Mao: Chem. Rev., 110 (2010) 6503. https://doi.org/10.1021/cr1001645
  2. Y. Kang, Y. Yang, L.-C. Yin, X. Kang, G. Liu and H.-M. Cheng: Adv. Mater., 27 (2015) 4572. https://doi.org/10.1002/adma.201501939
  3. A. Fujishima and K. Honda: Nature, 238 (1972) 37. https://doi.org/10.1038/238037a0
  4. A. J. Bard: Science, 207 (1980) 139. https://doi.org/10.1126/science.207.4427.139
  5. K. Takanabe: ACS Catalysis, 7 (2017) 8006. https://doi.org/10.1021/acscatal.7b02662
  6. M. Ni, M. K. Leung, D. Y. Leung and K. Sumathy: Renew. Sustain. Energy Rev., 11 (2007) 401. https://doi.org/10.1016/j.rser.2005.01.009
  7. R. Niishiro, R. Konta, H. Kato, W.-J. Chun, K. Asakura and A. Kudo: J. Phys. Chem. C, 111 (2007) 17420. https://doi.org/10.1021/jp074707k
  8. A. Kudo and Y. Miseki: Chem. Soc. Rev., 38 (2009) 253. https://doi.org/10.1039/B800489G
  9. K. Maeda and K. Domen: J. Phys. Chem. Lett., 1 (2010) 2655. https://doi.org/10.1021/jz1007966
  10. K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y. Inoue, H. Kobayashi and K. Domen: J. Phys. Chem. B, 109 (2005) 20504. https://doi.org/10.1021/jp053499y
  11. K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi and K. Domen: J. Am. Chem. Soc., 127 (2005) 8286. https://doi.org/10.1021/ja0518777
  12. K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue and K. Domen: Nature, 440 (2006) 295. https://doi.org/10.1038/440295a
  13. J. Kou, Z. Li, Y. Guo, J. Gao, M. Yang and Z. Zou: J. Mol. Catal. A: Chem., 325 (2010) 48. https://doi.org/10.1016/j.molcata.2010.03.029
  14. T. Hisatomi, J. Kubota and K. Domen: Chem. Soc. Rev., 43 (2014) 7520. https://doi.org/10.1039/C3CS60378D
  15. K. Lee, B. M. Tienes, M. B. Wilker, K. J. Schnitzenbaumer and G. Dukovic: Nano Lett., 12 (2012) 3268. https://doi.org/10.1021/nl301338z
  16. C.-H. Chuang, Y.-G. Lu, K. Lee, J. Ciston and G. Dukovic: J. Am. Chem. Soc., 137 (2015) 6452. https://doi.org/10.1021/jacs.5b02077
  17. K. Maeda, K. Teramura and K. Domen: J. Catal., 254 (2008) 198. https://doi.org/10.1016/j.jcat.2007.12.009
  18. M. J. Ward, W.-Q. Han and T.-K. Sham: J. Phys. Chem. C, 117 (2013) 20332. https://doi.org/10.1021/jp406990n
  19. Y. Li , L. Zhu, Y. Yang, H. Song, Z. Lou, Y. Guo and Z. Ye: Small, 11 (2015) 871. https://doi.org/10.1002/smll.201401770
  20. K. Lee, Y.-G. Lu, C.-H. Chuang, J. Ciston and G. Dukovic: J. Mater. Chem. A, 4 (2016) 2927. https://doi.org/10.1039/C5TA04314J
  21. B. Weng, S. Liu, Z.-R. Tang and Y.-J. Xu: RSC Adv., 4 (2014) 12685. https://doi.org/10.1039/c3ra47910b
  22. D. Li and Y. Xia: Nano Lett., 4 (2004) 933. https://doi.org/10.1021/nl049590f