• Title/Summary/Keyword: InGaN-based LED

Search Result 113, Processing Time 0.033 seconds

Probeless Estimation of Electroluminescence Intensities Based on Photoluminescence Measurements of GaN-Based Light-Emitting Diodes

  • Kim, Jongseok;Jeong, Hoon;Choi, Won-Jin;Jung, Hyundon
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.173-179
    • /
    • 2021
  • The electroluminescence (EL) intensities of GaN-based light-emitting diodes (LEDs) are estimated based on their photoluminescence (PL) properties. The PL intensity obtained under open-circuit conditions is divided into two parts: the PL intensity under a forward bias lower than the optical turn-on voltage, and the difference between the PL intensities under open-circuit conditions and under forward bias. The luminescence induced by photoexcitation under a constant forward bias lower than the optical turn-on voltage is primarily the PL from the excited area of the LED. In contrast the intensity difference, obtained by subtracting the PL intensity under the forward bias from that under open-circuit conditions, contains the EL induced by the photocarriers generated during photoexcitation. In addition, a reverse photocurrent is generated during photoexcitation under constant forward bias across the LED, and can be correlated with the PL-intensity difference. The relationship between the photocurrent and PL-intensity difference matches well the relationship between the injection current and EL intensity of LEDs. The ratio between the photocurrent generated under a bias and the short-circuit current is related to the ratio between the PL-intensity difference and the PL intensity under open-circuit conditions. A relational expression consisting of the ratios, short-circuit current, and PL under open-circuit conditions is proposed to estimate the EL intensity.

Analysis of the Junction Temperature in the LED Chips using the Finite Element Method (유한요소법을 이용한 LED 칩의 접합부 온도 해석)

  • Han, Ji-Won;Park, Joo-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.26-30
    • /
    • 2012
  • It is difficult to determine the junction temperature because LED lightings are manufactured using several chips with low power. This paper reports on the finite element method of the determination of junction temperature in the GaN-based LEDs. The calculated junction temperature of the LED chip using FEM was compared with the experimentally measured data. As the results of this study, the junction temperature of LED chips with via holes is lower than that of LED chips without via hole. Therefore, the research of via hole is necessary to decrease junction temperature of LED chips.

Fabrication of High Purity Ga-containing Solution using MOCVD dust (유기금속화학증착 분진(MOCVD dust)을 이용한 갈륨 함유 고순도 수용액 제조 연구)

  • Lee, Duk-Hee;Yoon, Jin-Ho;Park, Kyung-Soo;Hong, Myung-Hwan;Lee, Chan-Gi;Park, Jeung-Jin
    • Resources Recycling
    • /
    • v.24 no.4
    • /
    • pp.50-55
    • /
    • 2015
  • In this study, we have investigated solvent extraction of Ga and recovery of high pure Ga solution from MOCVD dust for manufacturing of LED chip. Effect of extractan, concentration of extractant were examined for choosing the more effective extractant and high pure Ga solution was fabricated by multi-stage extraction/stripping process. For extraction/separation of Ga based on the analysis of raw-material in previous study, 3 different extractants PC 99A, DP-8R, Cyanex 272 has been investigated and the extraction efficiency of 1.5 M Cyanex 272 was 43.8%. It was conformed that extraction efficiency of Ga was 83% in multi-stage extraction and 5N high purity Ga stripping solution without impurities also obtained.

Analysis of Deep-Trap States in GaN/InGaN Ultraviolet Light-Emitting Diodes after Electrical Stress

  • Jeong, Seonghoon;Kim, Hyunsoo;Lee, Sung-Nam
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1879-1883
    • /
    • 2018
  • We analyzed the deep-trap states of GaN/InGaN ultraviolet light-emitting diodes (UV LEDs) before and after electrical stress. After electrical stress, the light output power dropped by 5.5%, and the forward leakage current was increased. The optical degradation mechanism could be explained based on the space-charge-limited conduction (SCLC) theory. Specifically, for the reference UV LED (before stress), two sets of deep-level states which were located 0.26 and 0.52 eV below the conduction band edge were present, one with a density of $2.41{\times}10^{16}$ and the other with a density of $3.91{\times}10^{16}cm^{-3}$. However, after maximum electrical stress, three sets of deep-level states, with respective densities of $1.82{\times}10^{16}$, $2.32{\times}10^{16}cm^{-3}$, $5.31{\times}10^{16}cm^{-3}$ were found to locate at 0.21, 0.24, and 0.50 eV below the conduction band. This finding shows that the SCLC theory is useful for understanding the degradation mechanism associated with defect generation in UV LEDs.

Synthesis and Application of Bluish-Green BaSi2O2N2:Eu2+ Phosphor for White LEDs (백색 LED용 청록색 BaSi2O2N2:Eu2+ 형광체의 합성 및 응용)

  • Jee, Soon-Duk;Choi, Kang-Sik;Choi, Kyoung-Jae;Kim, Chang-Hae
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.250-254
    • /
    • 2011
  • We have synthesized bluish-green, highly-efficient $BaSi_2O_2N_2:Eu^{2+}$ and $(Ba,Sr)Si_2O_2N_2:Eu^{2+}$ phosphors through a conventional solid state reaction method using metal carbonate, $Si_3N_4$, and $Eu_2O_3$ as raw materials. The X-ray diffraction (XRD) pattern of these phosphors revealed that a $BaSi_2O_2N_2$ single phase was obtained. The excitation and emission spectra showed typical broadband excitation and emission resulting from the 5d to 4f transition of $Eu^{2+}$. These phosphors absorb blue light at around 450 nm and emit bluish-green luminescence, with a peak wavelength at around 495 nm. From the results of an experiment involving Eu concentration quenching, the relative PL intensity was reduced dramatically for Eu = 0.033. A small substitution of Sr in place of Ba increased the relative emission intensity of the phosphor. We prepared several white LEDs through a combination of $BaSi_2O_2N_2:Eu^{2+}$, YAG:$Ce^{3+}$, and silicone resin with a blue InGaN-based LED. In the case of only the YAG:$Ce^{3+}$-converted LED, the color rendering index was 73.4 and the efficiency was 127 lm/W. In contrast, in the YAG:$Ce^{3+}$ and $BaSi_2O_2N_2:Eu^{2+}$-converted LED, two distinct emission bands from InGaN (450 nm) and the two phosphors (475-750 nm) are observed, and combine to give a spectrum that appears white to the naked eye. The range of the color rendering index and the efficiency were 79.7-81.2 and 117-128 lm/W, respectively. The increased values of the color rendering index indicate that the two phosphor-converted LEDs have improved bluish-green emission compared to the YAG:Ce-converted LED. As such, the $BaSi_2O_2N_2:Eu^{2+}$ phosphor is applicable to white high-rendered LEDs for solid state lighting.

Effects of Carrier Leakage on Photoluminescence Properties of GaN-based Light-emitting Diodes at Room Temperature

  • Kim, Jongseok;Kim, Seungtaek;Kim, HyungTae;Choi, Won-Jin;Jung, Hyundon
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.164-171
    • /
    • 2019
  • Photoluminescence (PL) properties of GaN-based light-emitting diodes (LEDs) were analyzed to study the effects of carrier leakage on the luminescence properties at room temperature. The electrical leakage and PL properties were compared for LEDs showing leakages at forward bias and an LED with an intentional leakage path formed by connecting a parallel resistance of various values. The leakages at the forward bias, which could be observed from the current-voltage characteristics, resulted in an increase in the excitation laser power density for the maximum PL efficiency (ratio of PL intensity to excitation power) as well as a reduction in the PL intensity. The effect of carrier leakages on PL properties was similar to the change in PL properties owing to a reduction of the photovoltage by a reverse current since the direction of the carrier movement under photoexcitation is identical to that of the reverse current. Valid relations between PL properties and electrical properties were observed as the PL properties deteriorated with an increase in the carrier leakage. The results imply that the PL properties of LED chips can be an indicator of the electrical properties of LEDs.

Study on Efficiency Droop in a-plane InGaN/GaN Light Emitting Diodes

  • Song, Hoo-Young;Suh, Joo-Young;Kim, Eun-Kyu;Baik, Kwang-Hyeon;Hwang, Sung-Min;Yun, Joo-Sun;Shim, Jong-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.145-145
    • /
    • 2011
  • Light-emitting diodes (LEDs) based on III-nitrides compound semiconductors have achieved a high performance device available for display and illumination sector. However, the conventional c-plane oriented LED structures are still showing several problems given by the quantum confined Stark effect (QCSE) due to the effects of strong piezoelectric and spontaneous polarizations. The QCSE results in spatial separation of electron and hole wavefunctions in quantum wells, thereby decreasing the internal quantum efficiency and red-shifting the emission wavelength. Due to demands for improvement of device performance, nonpolar structure has been attracting attentions, since the quantum wells grown on nonpolar templates are free from the QCSE. However, current device performance for nonpolar LEDs is still lower than those for conventional LEDs. In this study, we discuss the potential possibilities of nonpolar LEDs for commercialization. In this study, we characterized current-light output power relation of the a-plane InGaN/GaN LEDs structures with the variation of quantum well structures. On-wafer electroluminescence measurements were performed with short pulse (10 us) and low duty factor (1 %) conditions applied for eliminating thermal effects. The well and barrier widths, and indium compositions in quantum well structures were changed to analyze the efficiency droop phenomenon.

  • PDF

Wide Color Gamut Backlight from Three-band White LED

  • Kim, Il-Ku;Chung, Kil-Yoan
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.67-70
    • /
    • 2007
  • A Wide Color Gamut Backlight system was studied using a three-band white Light-Emitting Diode. A three-band white light-emitting diode (LED) was fabricated using an InGaN-based blue LED chip that emits 445-nm blue peak, and a green phosphor and red phosphor that emit 535-nm green and 621-nm red peak emissions, respectively, when excited by 450-nm blue light. Using for this three-band white LED, wide color gamut backlight unit (BLU) was attained. The luminance of BLU and CIE 1931 chromaticity coordinates was $1,700Cd/m^2$ and (0.337, 0.346). Color filter matching simulations for this configuration show that the three-band white LED backlight can be enhanced by up to 16% over conventional white LED backlight color gamut.

Efficiency Improvement in InGaN-Based Solar Cells by Indium Tin Oxide Nano Dots Covered with ITO Films

  • Seo, Dong-Ju;Choi, Sang-Bae;Kang, Chang-Mo;Seo, Tae Hoon;Suh, Eun-Kyung;Lee, Dong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.345-346
    • /
    • 2013
  • InGaN material is being studied increasingly as a prospective material for solar cells. One of the merits for solar cell applications is that the band gap energy can be engineered from 0.7 eV for InN to 3.4 eV for GaN by varying of indium composition, which covers almost of solar spectrum from UV to IR. It is essential for better cell efficiency to improve not only the crystalline quality of the epitaxial layers but also fabrication of the solar cells. Fabrication includes transparent top electrodes and surface texturing which will improve the carrier extraction. Surface texturing is one of the most employed methods to enhance the extraction efficiency in LED fabrication and can be formed on a p-GaN surface, on an N-face of GaN, and even on an indium tin oxide (ITO) layer. Surface texturing method has also been adopted in InGaN-based solar cells and proved to enhance the efficiency. Since the texturing by direct etching of p-GaN, however, was known to induce the damage and result in degraded electrical properties, texturing has been studied widely on ITO layers. However, it is important to optimize the ITO thickness in Solar Cells applications since the reflectance is fluctuated by ITO thickness variation resulting in reduced light extraction at target wavelength. ITO texturing made by wet etching or dry etching was also revealed to increased series resistance in ITO film. In this work, we report a new way of texturing by deposition of thickness-optimized ITO films on ITO nano dots, which can further reduce the reflectance as well as electrical degradation originated from the ITO etching process.

  • PDF

p-Type Activation of AlGaN-based UV-C Light-Emitting Diodes by Hydrogen Removal using Electrochemical Potentiostatic Activation (전기화학적 정전위 활성화를 사용한 수소 제거에 의한 AlGaN기반의 UV-C 발광 다이오드의 p-형 활성화)

  • Lee, Koh Eun;Choi, Rak Jun;Kumar, Chandra Mohan Manoj;Kang, Hyunwoong;Cho, Jaehee;Lee, June Key
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.85-89
    • /
    • 2021
  • AlGaN-based UV-C light-emitting diodes (LEDs) were applied for p-type activation by electrochemical potentiostatic activation (EPA). The p-type activation efficiency was increased by removing hydrogen atoms through EPA treatment using a neutral Mg-H complex that causes high resistance and low conductivity. A neutral Mg-H complex is decomposed into Mg- and H+ depending on the key parameters of solution, voltage, and time. The improved hole carrier concentration was confirmed by secondary ion mass spectroscopy (SIMS) analysis. This mechanism eventually improved the internal quantum efficiency (IQE), the light extraction efficiency, the leakage current value in the reverse current region, and junction temperature, resulting in better UV-C LED lifetime. For systematic analysis, SIMS, Etamax IQE system, integrating sphere, and current-voltage measurement system were used, and the results were compared with the existing N2-annealing method.