• Title/Summary/Keyword: InGaAs sensors

Search Result 76, Processing Time 0.024 seconds

Embodiment of all-optical switching phenomena on a GaAs waveguide

  • Lee, Sang-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.85-95
    • /
    • 1996
  • Based on the transmission of coupled gap solitons in nonlinear periodic media, we present an all-optical switching scheme which has a novel architecture and principle. The proposed switch with an extremely small switching element can be realized on a semiconductor waveguide. We here investigate the switching performance with a GaAs waveguide in order to give criteria for the experimental realization of the all-optical switching phenomena. We also suggest a variation of an index-matching scheme to solve the technical problem such as the input-energy coupling into a periodic waveguide.

  • PDF

Controllability of Structural, Optical and Electrical Properties of Ga doped ZnO Nanowires Synthesized by Physical Vapor Deposition

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.148-151
    • /
    • 2013
  • The control of Ga doping in ZnO nanowires (NWs) by physical vapor deposition has been implemented and characterized. Various Ga-doped ZnO NWs were grown using the vapor-liquid-solid (VLS) method, with Au catalyst on c-plane sapphire substrate by hot-walled pulsed laser deposition (HW-PLD), one of the physical vapor deposition methods. The structural, optical and electrical properties of Ga-doped ZnO NWs have been systematically analyzed, by changing Ga concentration in ZnO NWs. We observed stacking faults and different crystalline directions caused by increasing Ga concentration in ZnO NWs, using SEM and HR-TEM. A $D^0X$ peak in the PL spectra of Ga doped ZnO NWs that is sharper than that of pure ZnO NWs has been clearly observed, which indicated the substitution of Ga for Zn. The electrical properties of controlled Ga-doped ZnO NWs have been measured, and show that the conductance of ZnO NWs increased up to 3 wt% Ga doping. However, the conductance of 5 wt% Ga doped ZnO NWs decreased, because the mean free path was decreased, according to the increase of carrier concentration. This control of the structural, optical and electrical properties of ZnO NWs by doping, could provide the possibility of the fabrication of various nanowire based electronic devices, such as nano-FETs, nano-inverters, nano-logic circuits and customized nano-sensors.

Constant Voltage Stress (CVS) and Hot Carrier Injection (HCI) Degradations of Vertical Double-date InGaAs TFETs for Bio Sensor Applications (바이오 센서 적용을 위한 수직형 이중게이트 InGaAs TFET의 게이트 열화 현상 분석)

  • Baek, Ji-Min;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.41-44
    • /
    • 2022
  • In this study, we have fabricated and characterized vertical double-gate (DG) InGaAs tunnel field-effect-transistors (TFETs) with Al2O3/HfO2 = 1/5 nm bi-layer gate dielectric by employing a top-down approach. The device exhibited excellent characteristics including a minimum subthreshold swing of 60 mV/decade, a maximum transconductance of 141 µS/㎛, and an on/off current ratio of over 103 at 20℃. Although the TFETs were fabricated using a dry etch-based top-down approach, the values of DIBL and hysteresis were as low as 40 mV/V and below 10 mV, respectively. By evaluating the effects of constant voltage and hot carrier injection stress on the vertical DG InGaAs TFET, we have identified the dominant charge trapping mechanism in TFETs.

A Chemically-driven Top-down Approach for the Formation of High Quality GaN Nanostructure with a Sharp Tip

  • Kim, Je-Hyeong;O, Chung-Seok;Go, Yeong-Ho;Go, Seok-Min;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.48-48
    • /
    • 2011
  • We have developed a chemically-driven top-down approach using vapor phase HCl to form various GaN nanostructures and successfully demonstrated dislocation-free and strain-relaxed GaN nanostructures without etching damage formed by a selective dissociation method. Our approach overcomes many limitations encountered in previous approaches. There is no need to make a pattern, complicated process, and expensive equipment, but it produces a high-quality nanostructure over a large area at low cost. As far as we know, this is the first time that various types of high-quality GaN nanostructures, such as dot, cone, and rod, could be formed by a chemical method without the use of a mask or pattern, especially on the Ga-polar GaN. It is well known that the Ga-polar GaN is difficult to etch by the common chemical wet etching method because of the chemical stability of GaN. Our chemically driven GaN nanostructures show excellent structure and optical properties. The formed nanostructure had various facets depending on the etching conditions and showed a high crystal quality due to the removal of defects, such as dislocations. These structure properties derived excellent optical performance of the GaN nanostructure. The GaN nanostructure had increased internal and external quantum efficiency due to increased light extraction, reduced strain, and improved crystal quality. The chemically driven GaN nanostructure shows promise in applications such as efficient light-emitting diodes, field emitters, and sensors.

  • PDF

Comprehensive study of components affecting extrinsic transconductance in In0.7Ga0.3As quantum-well high-electron-mobility transistors for image sensor applications (이미지 센서 적용을 위한 In0.7Ga0.3As QW HEMT 소자의 extrinsic trans-conductance에 영향을 미치는 성분들의 포괄적 연구)

  • Yun, Seung-Won;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.441-445
    • /
    • 2021
  • The components affecting the extrinsic transconductance (gm_ext) in In0.7Ga0.3As quantum-well (QW) high-electron-mobility transistors (HEMTs) on an InP substrate were investigated. First, comprehensive modeling, which only requires physical parameters, was used to explain both the intrinsic transconductance (gm_int) and the gm_ext of the devices. Two types of In0.7Ga0.3As QW HEMT were fabricated with gate lengths ranging from 10 ㎛ to sub-100 nm. These measured results were correlated with the modeling to describe the device behavior using analytical expressions. To study the effects of the components affecting gm_int, the proposed approach was extended to projection by changing the values of physical parameters, such as series resistances (RS and RD), apparent mobility (𝜇n_app), and saturation velocity (𝜈sat).

Reproduction of vibration patterns of elastic structures by block-wise modal expansion method (BMEM)

  • Jung, B.K.;Cho, J.R.;Jeong, W.B.
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.819-837
    • /
    • 2016
  • The quality of vibration pattern reproduction of elastic structures by the modal expansion method is influenced by the modal expansion method and the sensor placement as well as the accuracy of measured natural modes and the total number of vibration sensors. In this context, this paper presents an improved numerical method for reproducing the vibration patterns by introducing a block-wise modal expansion method (BMEM), together with the genetic algorithm (GA). For a given number of vibration sensors, the sensor positions are determined by an evolutionary optimization using GA and the modal assurance criterion (MAC). Meanwhile, for the proposed block-wise modal expansion, a whole frequency range of interest is divided into several overlapped frequency blocks and the vibration field reproduction is made block by block with different natural modes and different modal participation factors. A hollow cylindrical tank is taken to illustrate the proposed improved modal expansion method. Through the numerical experiments, the proposed method is compared with several conventional methods to justify that the proposed method provides the improved results.

Semi-analytical solutions for optimal distributions of sensors and actuators in smart structure vibration control

  • Jin, Zhanli;Yang, Yaowen;Soh, Chee Kiong
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.767-792
    • /
    • 2010
  • In this paper, the optimal design of vibration control system for smart structures has been investigated semi-analytically via the optimization of geometric parameters like the placements and sizes of piezoelectric sensors and actuators (S/As) bonded on the structures. The criterion based on the maximization of energy dissipation was adopted for the optimization of the control system. Based on the sensing and actuating equations, the total energy stored in the system which is used as the objective function was analytically derived with design variables explicitly presented. Two cases of single and combined vibration modes were addressed for a simply supported beam and a simply supported cylindrical shell. For single vibration mode, the optimal distributions of the piezoelectric S/As could be obtained analytically. However, the Sequential Quadratic Programming (SQP) method has to be employed to solve those which violated the prescribed constraints and to solve the case of combined vibration modes. The results of three examples, which include a simply supported beam, a simply supported cylindrical shell and a simply supported plate, showed good agreement with those obtained by the Genetic Algorithm (GA) method. Moreover, in comparison with the GA method, the proposed method is more effective in obtaining better optimization results and is much more efficient in terms of computation time.

Wet-etching Properties of GaAs Using $NH_4OH-H_2O_2-H_2O$ Mixed Solution and Its Application to Fabrication Method for Released GaAs Microstructures with Rectangular Cross Section ($NH_4OH-H_2O_2-H_2O$ 혼합액을 이용한 GaAS의 습식식각 특성 연구 및 이를 이용한 부유된 사각형 단면을 가지는 GaAs 미세구조물의 제작 방법)

  • Kim, Jong-Pal;Park, Sang-Jun;Paik, Seung-Joon;Kim, Se-Tae;Koo, Chi-Wan;Lee, Seung-Ki;Cho, dong-Il
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.304-313
    • /
    • 2001
  • In this research, we investigate wet-etching properties of GaAs in $NH_4OH-H_2O_2-H_2O$, and develop the fabrication method of GaAs microstructures with rectangular cross section using (001) GaAs substrate. For obtaining wet-etching properties with respect to crystallographic orientation, the etch rates and cross-section etch profiles of (001) GaAs with 16 different compositions and the undercut rates with 5 different compositions are measured using $NH_4OH-H_2O_2-H_2O$ mixed solutions. From these experimental data, a new GaAs micromachining method in bulk (001) GaAs is proposed, and used to fabricate a released microbridges with a rectangular cross section. The developed GaAs micromachining method can be very useful for low-loss, highly-tunable capacitors for RF components and for integration with GaAs optical components.

  • PDF

Selective Oxidation of Single Crystalline AlAs layer on GaAs substrate and XPS(X-ray photoelectron spectroscopy) Analysis (GaAs 기판위에 성장된 단결정 AlAs층의 선택적 산화 및 XPS (X-ray photonelectron spectroscopy) 분석)

  • Lee, Suk-Hun;Lee, Young-Soo;Tae, Heung-Sik;Lee, Young-Hyun;Lee, Jung-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.79-84
    • /
    • 1996
  • A $1\;{\mu}m$ thick n-type GaAs layer with Si doping density of $1{\times}10^{17}/cm^{3}$ and a $500{\AA}$ thick undoped single crystalline AlAs layer were subsequently grown by molecular beam epitaxy on the $n^{+}$ GaAs substrate. The AlAs/GaAs layer was oxidized in $N_{2}$ bubbled $H_{2}O$ vapor($95^{\circ}C$) ambient at $400^{\circ}C$ for 2 and 3 hours. From the result of XPS analysis, small amounts of $As_{2}O_{3}$, AlAs, and elemental As were found in the samples oxidized up to 2 hours. After 3 hours oxidation, however, various oxides related to As were dissolved and As atoms were diffused out toward the oxide surface. The as-grown AlAs/GaAs layer was selectively converted to $Al_{2}O_{3}/GaAs$ at the oxidation temperature $400^{\circ}C$ for 3 hours. The oxidation temperature and time is very critical to stop the oxidation at the AlAs/GaAs interface and to form a defect-free surface layer.

  • PDF

Analysis of Magnetic Dipole Moment for a 300-W Solar-Cell Array

  • Shin, Goo-Hwan;Kim, Dong-Guk;Kwon, Se-Jin;Lee, Hu-Seung
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.181-186
    • /
    • 2019
  • The attitude information of spacecraft can be obtained by the sensors attached to it using a star tracker, three-axis magnetometer, three-axis gyroscope, and a global positioning signal receiver. By using these sensors, the spacecraft can be maneuvered by actuators that generate torques. In particular, electromagnetic-torque bars can be used for attitude control and as a momentum-canceling instrument. The spacecraft momentum can be created by the current through the electrical circuits and coils. Thus, the current around the electromagnetic-torque bars is a critical factor for precisely controlling the spacecraft. In connection with these concerns, a solar-cell array can be considered to prevent generation of a magnetic dipole moment because the solar-cell array can introduce a large amount of current through the electrical wires. The maximum value of a magnetic dipole moment that cannot affect precise control is $0.25A{\cdot}m^2$, which takes into account the current that flows through the reaction-wheel assembly and the magnetic-torque current. In this study, we designed a 300-W solar cell array and presented an optimal wire-routing method to minimize the magnetic dipole moment for space applications. We verified our proposed method by simulation.