DOI QR코드

DOI QR Code

Constant Voltage Stress (CVS) and Hot Carrier Injection (HCI) Degradations of Vertical Double-date InGaAs TFETs for Bio Sensor Applications

바이오 센서 적용을 위한 수직형 이중게이트 InGaAs TFET의 게이트 열화 현상 분석

  • Baek, Ji-Min (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Kim, Dae-Hyun (School of Electronic and Electrical Engineering, Kyungpook National University)
  • 백지민 (경북대학교 전자전기공학부) ;
  • 김대현 (경북대학교 전자전기공학부)
  • Received : 2021.10.19
  • Accepted : 2022.01.14
  • Published : 2022.01.31

Abstract

In this study, we have fabricated and characterized vertical double-gate (DG) InGaAs tunnel field-effect-transistors (TFETs) with Al2O3/HfO2 = 1/5 nm bi-layer gate dielectric by employing a top-down approach. The device exhibited excellent characteristics including a minimum subthreshold swing of 60 mV/decade, a maximum transconductance of 141 µS/㎛, and an on/off current ratio of over 103 at 20℃. Although the TFETs were fabricated using a dry etch-based top-down approach, the values of DIBL and hysteresis were as low as 40 mV/V and below 10 mV, respectively. By evaluating the effects of constant voltage and hot carrier injection stress on the vertical DG InGaAs TFET, we have identified the dominant charge trapping mechanism in TFETs.

Keywords

Acknowledgement

이 논문은 2021 년도 정부 (과학기술정보통신부)의 재원으로 한국연구재단-나노·소재기술개발사업의 지원을 받아 수행된 연구임 (NRF-2017M3A7B4049517).

References

  1. X. P. A. Gao, G. Zheng, and C. M. Lieber, "Subthreshold Regime has the Optimal Sensitivity for Nanowire FET Biosensors", Nano Lett., Vol. 10, No. 2, pp. 547-552, 2010. https://doi.org/10.1021/nl9034219
  2. A. Gao, N. Lu, P. Dai, T. Li, H. Pei, X. Gao, Y. Gong, Y. Wang, and C. Fan, "Silicon-Nanowire-Based CMOS-Compatible Field-Effect Transistor Nanosensors for Ultrasensitive Electrical Detection of Nucleic Acids", Nano Lett., Vol. 11, No. 9, pp. 3974-3978, 2011. https://doi.org/10.1021/nl202303y
  3. G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, "Multiplexed electrical detection of cancer markers with nanowire sensor arrays", Nat. Biotechnol., Vol. 23, No. 10, pp. 1294-1301, 2005. https://doi.org/10.1038/nbt1138
  4. A. Gao, N. Lu, Y. Wang, and T. Li, "Robust ultrasensitive tunneling-FET biosensor for point-of-care diagnostics", Sci. Rep., Vol. 6, No. 1, pp. 1-9, 2016. https://doi.org/10.1038/s41598-016-0001-8
  5. A. M. Ionescu and H. Riel, "Tunnel field-effect transistors as energy-efficient electronic switches", Nature, Vol. 479, No. 7373, pp. 329-337, 2011. https://doi.org/10.1038/nature10679
  6. A. C. Seabaugh and Q. Zhang, "Low-voltage tunnel transistors for beyond CMOS logic", Proc. IEEE, Vol. 98, No. 12, pp. 2095-2110, 2010. https://doi.org/10.1109/JPROC.2010.2070470
  7. N. N. Reddy and D. K. Panda, "A Comprehensive Review on Tunnel Field-Effect Transistor (TFET) Based Biosensors: Recent Advances and Future Prospects on Device Structure and Sensitivity", Silicon, Vol 13, pp. 3085-3100, 2021. https://doi.org/10.1007/s12633-020-00657-1
  8. S. Kanungo, S. Chattopadhyay, P. S. Gupta, K. Sinha, and H. Rahaman, "Study and Analysis of the Effects of SiGe Source and Pocket-Doped Channel on Sensing Performance of Dielectrically Modulated Tunnel FET-Based Biosensors", IEEE Trans. Electron Devices, Vol. 63, No. 6, pp. 2589-2596, 2016. https://doi.org/10.1109/TED.2016.2556081
  9. D. Sarkar and K. Banerjee, "Fundamental Limitations of Conventional-FET Biosensors: Quantum-Mechanical-Tunneling to the Rescue", in Proc. DRC, pp. 83-84, 2012.
  10. P. R. Nair and M. A. Alam, "Screening-Limited Response of NanoBiosensors", Nano Lett., Vol. 8, No. 5, pp. 1281-1285, 2008. https://doi.org/10.1021/nl072593i
  11. M. Yokoyama, N. Taoka, R. Suzuki, O. Ichikawa, H. Yamada, N. Fukuhara, M. Hata, M. Sugiyama, Y. Nakano, M. Takenaka, and S. Takagi, "Sulfur cleaning for (100), (111)A, and (111)B InGaAs surfaces with In content of 0.53 and 0.70 and their Al2O3/InGaAs MOS interface properties", in IPRM, pp. 167-170, 2012.
  12. Y. Xuan, Y. Q. Wu and P. D. Ye, "High-Performance Inversion-Type Enhancement-Mode InGaAs MOSFET With Maximum Drain Current Exceeding 1 A/mm", IEEE Electron Device Lett., Vol. 29, No. 4, pp 294-296, 2008. https://doi.org/10.1109/LED.2008.917817
  13. J. Franco, A. Alian, B. Kaczer, D. Lin, T. Ivanov, A. Pourghaderi, K. Martens, Y. Mols, D. Zhou, N. Waldron, S. Sioncke, T. Kauerauf, N. Collaert, A. Thean, M. Heyns1, and G. Groeseneken1, "Suitability of high-k gate oxides for III-V devices: a PBTI study in In0.53Ga0.47As devices with Al2O3", in IEEE Proc. IRPS, pp.6A.2.1-6A.2.6, 2014.
  14. Y. Yuan, B. Yu, J. Ahn, P. C. McIntyre, P. M. Asbeck, M. J. W. Rodwell, and Y. Taur, "A Distributed Bulk-Oxide Trap Model for Al2O3 InGaAs MOS Devices", IEEE Trans. Electron Devices, Vol. 59, No. 8, pp. 2100-2106, 2012. https://doi.org/10.1109/TED.2012.2197000
  15. G. F. Jiao, Z. X. Chen, H. Y. Yu , X. Y. Huang, D. M. Huang, N. Singh, G. Q. Lo, D. L. Kwong, M.-F. Li, "New Degradation Mechanisms and Reliability Performance in Tunneling Field Effect Transistors", in IEDM Tech. Dig., pp. 1-4, 2009.
  16. S. C. Kang , D. Lim, S. J. Kang, S. K. Lee, C. Choi , D. S. Lee, and B. H. Lee, "Hot-Carrier Degradation Estimation of a Silicon-on-Insulator Tunneling FET Using Ambipolar Characteristics", IEEE Electron Device Lett., Vol. 40, No. 11, pp. 1716-1719, 2019. https://doi.org/10.1109/led.2019.2942837