• Title/Summary/Keyword: InGaAlP laser diode

Search Result 17, Processing Time 0.025 seconds

A Study on the Immunohistology in Injury Cure of Rat by using InGaAlP Laser Diode (InGaAlP 레이저다이오드를 적용한 Rat의 착상 치유에서 면역조직화학적 연구)

  • Yu, Seong-Mi;Park, Yong-Pil;Cheon, Min-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.431-435
    • /
    • 2009
  • The apparatus has been fabricated using the laser diode and microprocessor unit. The apparatus used a InGaAlP laser diode for laser medical therapy and was designed for a pulse width modulation type to increase stimulation effects. To raise the stimulus effect of the human body, the optical irradiation frequency could be set up. The study has executed in-vivo experiment by employing our own developed laser diode irradiation system to investigate the effects of the InGaAlP laser diode irradiation on the wound healing as a preliminary study aimed at the application of InGaAlP laser diode to wound healing of human skin injury. The study cut out whole skin layers of Sprague-Dawley rat on the back part in 1 cm circle and observed developing effects after executing light irradiation for 9 days, and in result it is found that the light irradiation rat showed earlier wound healing than non-irradiation rat during the experimental period. In addition, there are some differences found regarding the healing process between laser diode irradiated rats and non-irradiated ones.

Influence of Emitter Width on the Performance of 975-nm (In,Ga)(As,P)/(Al,Ga)As High-power Laser Diodes

  • Yang, Jung-Tack;Kim, Younghyun;Pournoury, Marzieh;Lee, Jae-Bong;Bang, Dong-Soo;Kim, Tae-Kyung;Choi, Woo-Young
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.445-450
    • /
    • 2019
  • The influence of high-power laser diode (HPLD) emitter width on the device performance is investigated for 975-nm (In,Ga)(As,P)/(Al,Ga)As broad-area HPLDs, using self-consistent electro-thermal-optical simulation. To guarantee the simulation's accuracy, simulated results are matched with the measured results for a sample HPLD with fitting parameters. The influences of HPLD emitter width on temperature distribution, output power, and the beam product parameter (BPP) are analyzed for three different emitter widths of 50, 70, and $90{\mu}m$. It is found that a device with smaller emitter width exhibits both thermal rollover and thermal blooming at lower output power, but smaller BPP.

940-nm 350-mW Transverse Single-mode Laser Diode with AlGaAs/InGaAs GRIN-SCH and Asymmetric Structure

  • Kwak, Jeonggeun;Park, Jongkeun;Park, Jeonghyun;Baek, Kijong;Choi, Ansik;Kim, Taekyung
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.583-589
    • /
    • 2019
  • We report experimental results on 940-nm 350-mW AlGaAs/InGaAs transverse single-mode laser diodes (LDs) adopting graded-index separate confinement heterostructures (GRIN-SCH) and p,n-clad asymmetric structures, with improved temperature and small-divergence beam characteristics under high-output-power operation, for a three-dimensional (3D) motion-recognition sensor. The GRIN-SCH design provides good carrier confinement and prevents current leakage by adding a grading layer between cladding and waveguide layers. The asymmetric design, which differs in refractive-index distribution of p-n cladding layers, reduces the divergence angle at high-power operation and widens the transverse mode distribution to decrease the power density around emission facets. At an optical power of 350 mW under continuous-wave (CW) operation, Gaussian narrow far-field patterns (FFP) are measured with the full width at half maximum vertical divergence angle to be 18 degrees. A threshold current (Ith) of 65 mA, slope efficiency (SE) of 0.98 mW/mA, and operating current (Iop) of 400 mA are obtained at room temperature. Also, we could achieve catastrophic optical damage (COD) of 850 mW and long-term reliability of 60℃ with a TO-56 package.

Analysis of Lateral-mode Characteristics of 850-nm MQW GaAs/(Al,Ga)As Laser Diodes (850 nm GaAs/AlGaAs MQW LD의 Lateral-mode 특성 연구)

  • Yang, Jung-Tack;Kwak, Jung-Geun;Choi, An-Sik;Kim, Tae-Kyung;Choi, Woo-Young
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.2
    • /
    • pp.55-61
    • /
    • 2021
  • The lateral-mode characteristics of 850-nm GaAs/(Al,Ga)As multiple-quantum-well laser diodes and their influence on the kinks in output optical power are investigated. For the investigation, self-consistent electro-thermal-optical simulation and measurement of fabricated devices are used. From this investigation, the optimal P-cladding thickness that provides single-lateral-mode operation is determined, so that high beam quality can be achieved even at high output powers.

The Effect of GaAlAs Laser Irradiation on VEGF Expression in Muscle Contusion of Rats (GaAlAs 레이저 조사가 근타박상이 유발된 흰쥐 골격근내 혈관내피성장인자 발현에 미치는 영향)

  • Kim Souk-Boum;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.3
    • /
    • pp.16-44
    • /
    • 2003
  • Skeletal muscle regeneration is a vital process for various muscle myopathies and muscular adaptation to physiological overload. Angiogenesis is the key event in the process of muscle regeneration, and vascular endothelial growth factor(VEGF) plays an important role in it. The purpose of this study was to evaluate the effect of GaAlAs(830nm) laser and immunoreactivity of VEGF on angiogenesis after muscle contusion injury. Muscle contusion injury was induced in the triceps surae muscle by dropping a metal bead(31.4g). GaAlAs laser irradiation(power 20 mW, frequency 2000 Hz, treatment time 15 min) was applied directly to the skin of injured muscle daily for seven days. The experimental group I was irradiated immediately by laser after injury, whereas the experimental group II was irradiated after 1 day of injury. The control group was non-irradiated. The results of this study were as follows. 1. In morphological observation, there were no significant changes in experimental and control groups for 7 days. At 3 days, however, the splited muscle fibers were observed in experimental groups, and the muscle atrophy and granular tissue viewed at 7 days in control group. 2. The VEGF was expressed in muscle fiber that located in the interspace between gastrocnemius and soleus muscles. As the time coursed, the immunoreactivity of VEGF also seemed to be strong in the individual muscle fibers. 3. The experimental group I & II showed higher immunoreactivity of VEGF than control group(p<0.05). Then, the experimental group I showed higher than group II especially(p<0.05). These data suggest GaAlAs semiconduct diode laser irradiation(830nm) enhanced angiogenesis in the skeletal muscle induced contusion injury, and immediate laser irradiation after injury promoted the angiogenesis greatly than after 1 day of injury.

  • PDF

Ridge Formation by Dry-Etching of Pd and AlGaN/GaN Superlattice for the Fabrication of GaN Blue Laser Diodes

  • Kim, Jae-Gwan;Lee, Dong-Min;Park, Min-Ju;Hwang, Seong-Ju;Lee, Seong-Nam;Gwak, Jun-Seop;Lee, Ji-Myeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.391-392
    • /
    • 2012
  • In these days, the desire for the precise and tiny displays in mobile application has been increased strongly. Currently, laser displays ranging from large-size laser TV to mobile projectors, are commercially available or due to appear on the market [1]. In order to achieve a mobile projectors, the semiconductor laser diodes should be used as a laser source due to their size and weight. In this presentation, the continuous etch characteristics of Pd and AlGaN/GaN superlattice for the fabrication of blue laser diodes were investigated by using inductively coupled $CHF_3$ and $Cl_2$ -based plasma. The GaN laser diode samples were grown on the sapphire (0001) substrate using a metal organic chemical vapor deposition system. A Si-doped GaN layer was grown on the substrate, followed by growth of LD structures, including the active layers of InGaN/GaN quantum well and barriers layer, as shown in other literature [2], and the palladium was used as a p-type ohmic contact metal. The etch rate of AlGaN/GaN superlattice (2.5/2.5 nm for 100 periods) and n-GaN by using $Cl_2$ (90%)/Ar (10%) and $Cl_2$ (50%)/$CHF_3$ (50%) plasma chemistry, respectively. While when the $Cl_2$/Ar plasma were used, the etch rate of AlGaN/GaN superlattice shows a similar etch rate as that of n-GaN, the $Cl_2/CHF_3$ plasma shows decreased etch rate, compared with that of $Cl_2$/Ar plasma, especially for AlGaN/GaN superlattice. Furthermore, it was also found that the Pd which is deposited on top of the superlattice couldn't be etched with $Cl_2$/Ar plasma. It was indicating that the etching step should be separated into 2 steps for the Pd etching and the superlattice etching, respectively. The etched surface of stacked Pd/superlattice as a result of 2-step etching process including Pd etching ($Cl_2/CHF_3$) and SLs ($Cl_2$/Ar) etching, respectively. EDX results shows that the etched surface is a GaN waveguide free from the Al, indicating the SLs were fully removed by etching. Furthermore, the optical and electrical properties will be also investigated in this presentation. In summary, Pd/AlGaN/GaN SLs were successfully etched exploiting noble 2-step etching processes.

  • PDF

Biological effects of a semiconductor diode laser on human periodontal ligament fibroblasts

  • Choi, Eun-Jeong;Yim, Ju-Young;Koo, Ki-Tae;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.3
    • /
    • pp.105-110
    • /
    • 2010
  • Purpose: It has been reported that low-level semiconductor diode lasers could enhance the wound healing process. The periodontal ligament is crucial for maintaining the tooth and surrounding tissues in periodontal wound healing. While low-level semiconductor diode lasers have been used in low-level laser therapy, there have been few reports on their effects on periodontal ligament fibroblasts (PDLFs). We performed this study to investigate the biological effects of semiconductor diode lasers on human PDLFs. Methods: Human PDLFs were cultured and irradiated with a gallium-aluminum-arsenate (GaAlAs) semiconductor diode laser of which the wavelength was 810 nm. The power output was fixed at 500 mW in the continuous wave mode with various energy fluencies, which were 1.97, 3.94, and 5.91 $J/cm^2$. A culture of PDLFs without laser irradiation was regarded as a control. Then, cells were additionally incubated in 72 hours for MTS assay and an alkaline phosphatase (ALPase) activity test. At 48 hours post-laser irradiation, western blot analysis was performed to determine extracellular signal-regulated kinase (ERK) activity. ANOVA was used to assess the significance level of the differences among groups (P<0.05). Results: At all energy fluencies of laser irradiation, PDLFs proliferation gradually increased for 72 hours without any significant differences compared with the control over the entire period taken together. However, an increment of cell proliferation significantly greater than in the control occurred between 24 and 48 hours at laser irradiation settings of 1.97 and 3.94 $J/cm^2$ (P<0.05). The highest ALPase activity was found at 48 and 72 hours post-laser irradiation with 3.94 $J/cm^2$ energy fluency (P<0.05). The phosphorylated ERK level was more prominent at 3.94 $J/cm^2$ energy fluency than in the control. Conclusions: The present study demonstrated that the GaAlAs semiconductor diode laser promoted proliferation and differentiation of human PDLFs.

AlInGaN - based multiple quantum well laser diodes for Blu-ray Disc application

  • O. H. Nam;K. H. Ha;J. S. Kwak;Lee, S.N.;Park, K.K.;T. H. Chang;S. H. Chae;Lee, W.S.;Y. J. Sung;Paek H.S.;Chae J.H.;Sakong T.;Kim, Y.;Park, Y.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.20-20
    • /
    • 2003
  • We developed 30 ㎽-AlInGaN based violet laser diodes. The fabrication procedures of the laser diodes are described as follows. Firstly, GaN layers having very low defect density were grown on sapphire substrates by lateral epitaxial overgrowth method. The typical dislocation density was about 1-3$\times$10$^{6}$ /$\textrm{cm}^2$ at the wing region. Secondly, AlInGaN laser structures were grown on LEO-GaN/sapphire substrates by MOCVD. UV activation method, instead of conventional annealing, was conducted to achieve good p-type conduction. Thirdly, ridge stripe laser structures were fabricated. The cavity mirrors were formed by cleaving method. Three pairs of SiO$_2$ and TiO$_2$ layers were deposited on the rear facet for mirror coating. Lastly, laser diode chips were mounted on AlN submount wafers by epi-down bonding method. The lifetime of the laser diodes was over 10,000 hrs at room temperature under automatic power controlled condition. We expect the performance of the LDs to be improved by the optimization of the growth and fabrication process. The detailed characteristics and important issues of the laser diodes will be discussed at the conference.

  • PDF

Review of the Properties of the Laser and the Spectrum of Laser Instruments for Diabetic Ulcer (당뇨병성 궤양에 사용되는 레이저의 특성에 대한 연구)

  • Kang, Ki-wan;Kang, Ja-yeon;Jeong, Min-jeong;Kim, Hong-jun;Seo, Hyung-sik;Jang, In-soo
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.29 no.4
    • /
    • pp.14-23
    • /
    • 2016
  • Objectives : One of major complications of diabetes, diabetic ulcer is also one of the main reasons for amputation, and the prevalence rate is 4-10%. Laser therapy is widely used for leg ulcer and diabetic ulcer, and it is known to improve wound epithelialization, cellular content, and collagen deposition. The purpose of this study is to investigate the properties of the laser and the spectrum of laser instruments for diabetic ulcer. Methods : We performed literature search using the PubMed, Cochrane, CINAHL and Web of science for the data in English. In addition, other databases were checked for different languages such as OASIS and NDSL for the literature in Korean, CNKI in Chinese, and CiNii and J-STAGE written in Japanese. We excluded all review article and experimental studies, and only clinical studies using laser or light emitting diode (LED) for diabetic ulcer were selected. Results : A total twenty papers were selected. Different light sources were used as follows: LED, HeNe, InGaAlP, GaAlAs, GaAs, CO2, and KTP. The number of LED studies was 9, and HeNe laser was 7, and InGaAlP and GaAlAs laser was 2, GaAs, CO2, and KTP laser was 1 for each. Various energy density of the clinical study were reported. Conclusions : It is suggested that to select appropriate laser type and give the adequate output power to treat diabetic ulcer. Further evaluation and research for the condition of laser therapy to treat diabetic ulcers are warranted.