DOI QR코드

DOI QR Code

Influence of Emitter Width on the Performance of 975-nm (In,Ga)(As,P)/(Al,Ga)As High-power Laser Diodes

  • Received : 2019.06.03
  • Accepted : 2019.08.05
  • Published : 2019.10.25

Abstract

The influence of high-power laser diode (HPLD) emitter width on the device performance is investigated for 975-nm (In,Ga)(As,P)/(Al,Ga)As broad-area HPLDs, using self-consistent electro-thermal-optical simulation. To guarantee the simulation's accuracy, simulated results are matched with the measured results for a sample HPLD with fitting parameters. The influences of HPLD emitter width on temperature distribution, output power, and the beam product parameter (BPP) are analyzed for three different emitter widths of 50, 70, and $90{\mu}m$. It is found that a device with smaller emitter width exhibits both thermal rollover and thermal blooming at lower output power, but smaller BPP.

Keywords

References

  1. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium- doped large-core fiber laser with 1 kW continuouswave output power," in Proc. Advanced Solid-State Photonics 2004 (Optical Society of America, New Mexico, US, 2004), paper PDP13.
  2. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium- doped large-core fiber laser with 1.36 kW continuouswave output power," Opt. Express 12 6088-6092 (2004). https://doi.org/10.1364/OPEX.12.006088
  3. A. Liu, M. A. Norsen, and R. D. Mead, "60-W green output by frequency doubling of a polarized Yb-doped fiber laser," Opt. Lett. 30, 67-69 (2005). https://doi.org/10.1364/OL.30.000067
  4. L. Zhong and X. Ma, "Recent developments in high power semiconductor diode lasers," in Optoelectronics - Devices and Applications, P. Predeep, ed. (InTech, London, UK, 2011), Chapter 16, pp. 325-348.
  5. V. Gapontsev, N. Moshegov, I. Berezin, A. Komissarov, P. Trubenko, D. Miftakhutdinov, I. Berishev, V. Chuyanov, O. Raisky, and A. Ovtchinnikov, "Highly-efficient high-power pumps for fiber lasers," Proc. SPIE 10086, 1008604 (2017).
  6. A. V. Aluev, A. M. Morozyuk, M. S. Kobyakova, and A. A. Chel'nyi, "High-power 2.5-W cw AlGaAs/GaAs laser diodes," Quantum Electron. 31, 627-628 (2001). https://doi.org/10.1070/QE2001v031n07ABEH002016
  7. J. Piprek, "Self-consistent far-field blooming analysis for high-power Fabry-Perot laser diodes," Proc. SPIE 8619, 861910 (2013).
  8. P. Crump, S. Bldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, "Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers," Semicond. Sci. Technol. 27, 045001 (2012). https://doi.org/10.1088/0268-1242/27/4/045001
  9. PICS3D, Crosslight Software Inc. [Online]. Available: http://www.crosslight.com (2016).
  10. S.-S. Beyertt, M. Zorn, T. Kübler, H. Wenzel, M. Weyers, A. Giesen, G. Tränkle, and U. Brauch, "Optical in-well pumping of a semiconductor disk laser with high optical efficiency," IEEE J. Quantum Electron. 41, 1439-1449 (2005). https://doi.org/10.1109/JQE.2005.858794
  11. C. J. Hages, A. Redinger, S. Levcenko, H. Hempel, M. J. Koeper, R. Agrawal, D. Greiner, C. A. Kaufmann, and T. Unold, "Identifying the real minority carrier lifetime in nonideal semiconductors: a case study of kesterite materials," Adv. Energy Mater. 7, 1700167 (2017). https://doi.org/10.1002/aenm.201700167
  12. J. Piprek, J. K. White, and A. J. SpringThorpe, "What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?," IEEE J. Quantum Electron. 38, 1253-1259 (2002). https://doi.org/10.1109/JQE.2002.802441
  13. N. A. Pikhtin, S. O. Slipchenko, I. S. Shashkin, M. A. Ladugin, A. A. Marmalyuk, A. A. Podoskin, and I. S. Tarasov, "The temperature dependence of internal optical losses in semiconductor lasers ($\lambda$ = 900-920 nm)," Semiconductors 44, 1365-1369 (2010). https://doi.org/10.1134/S1063782610100210
  14. A. Bachmann, C. Lauer, M. Furitsch, H. Knig, M. Mller, and U. Strau, "Recent brightness improvements of 976 nm high power laser bars," Proc. SPIE 10086, 1008602 (2017).