Self-assembled InAs/InAlGaAs quantum dots (QDs) grown on an InP (001) substrate have been investigated by using photoluminescence (PL) and time-resolved PL measurements. The single layer (QD1) and seven stacks (QD2) of InAs/InAlGaAs QDs grown by the conventional S-K growth mode were used. The PL peak at 10 K was 1,320 nm for both QD1 and QD2. As the temperature increases from 10 to 300 K, the PL peaks for QD1 and QD2 were red-shifted in the amount of 178 and 264 nm, respectively. For QD1, the PL decay increased with increasing emission wavelength from 1,216 to 1,320 nm, reaching a maximum decay time of 1.49 ns at 1,320 nm, and then decreased as the emission wavelength was increased further. However, the PL decay time for QD2 decreased continuously from 1.83 to 1.22 ns as the emission wavelength was increased from 1,130 to 1,600 nm, respectively. These PL and TRPL results for QD2 can be explained by the large variation in the QD size with stacking number caused by the phase separation of InAlGaAs.
This paper shows the high performance as a photodetector of InGaP/GaAs HPT with 3-terminal caused by its inherent good electrical properties compared with AIGaAs/GaAs HPT. InGaP/GaAs HPT produced the high optical gain of about 61 where HPT is biased at Vc=3V, Iв=2${\mu}\textrm{A}$ with an input optical power of 1.23㎼. This is 2.5 times higher than that of AIGaAs/GaAs HPT. And we examined that the optical gain of HPTs becomes larger when operating in 3-terminal configuration rather than 2-terminal with the floating base. for a given base current of 2${\mu}\textrm{A}$, the optical gain is enhanced about 18% in the InGaP/GaAs HPT and about 27% in the AIGaAs/GaAs HPT over that of the 2-terminal device.
We investigated the optical property and the electronic subband structure of InAs quantum dots in an InAsGa/GaAs well structure utilizing photoluminescence (PL), PL excitation (PLE) and near infrared transmission spectroscopy. From transmission and PLE spectra, we found three bound states in the InAs quantum dot and two bound states in InGaAs/GaAs quantum well, and correlated to the results of intersubband transitions observed in photocurrent spectrum.
Proceedings of the Korean Vacuum Society Conference
/
2010.02a
/
pp.165-165
/
2010
$1.55\;{\mu}m$ 대역의 레이저 다이오드를 제작하기 위해, InP(001) 기판에 InAlGaAs 물질을 장벽층으로 하는 InAs 양자점 구조를 분자선증착기 (MBE)를 이용하여 성장하고 구조 및 광학적 특성을 Double Crystal X-ray Diffraction (DCXRD), Atomic Force Microscopy (AFM), Photoluminescence (PL)을 이용하여 평가하였다. 일반적으로 InAlGaAs 물질은 고유한 상분리 현상 (Phase Separation)이 나타나는 특성이 있으며, 이는 양자점 성장에 중요한 요인으로 작용할 수 있다. 이러한 InAlGaAs 물질의 상분리 현상을 기판온도 ($540^{\circ}C$, $555^{\circ}C$, $570^{\circ}C$)를 비롯한 성장변수를 변화시켜 제어하고 InAs 양자점 형성에 어떠한 영향을 미치는지를 분석하였다. 540의 성장온도에서 InP(001) 기판에 격자정합한 InAlGaAs 장벽층이 성장온도를 $570^{\circ}C$로 증가시킬 경우 기판에 대하여 인장 응력 (Tensile Strain)을 받는 구조로 변화되었다. 인장응력을 받는 InAlGaAs 장벽층을 Ga Flux 양을 조절하여 격자정합한 InAlGaAs 층을 형성할 수 있었다. AFM을 통한 표면 형상 분석 결과, 서로 다른 기판온도에서 성장한 InAlGaAs 물질이 InP(001) 기판에 격자정합 조건일지라도 표면의 거칠기 (Surface Roughness)는 매우 다른 양상을 보였고 InAs 양자점 형성에 직접적으로 영향을 주었다. $570^{\circ}C$에서 성장한 InAlGaAs 위에 형성한 InAs 양자점의 가로방향 크기를 세로방향 크기로 나눈 비율이 1.03으로서, 555와 $540^{\circ}C$의 1.375 와 1.636와 비교할 때 모양 대칭성이 현저히 개선된 것을 알 수 있다. 상분리 현상이 줄어 표면 거칠기가 좋은 InAlGaAs 위에 양자점을 형성할 때 원자들의 이동도가 상대적으로 높아 InAs 양자점의 크기가 증가하고, 밀도가 감소하는 현상이 나타났다. 또한 InAlGaAs 장벽층이 InP(001) 기판을 기준으로 응력 (Compressive 또는 Tensile)이 존재하는 경우, InAs 양자점 모양이 격자정합 조건 보다 비대칭적으로 변하는 특성을 보여 주었다. 이로부터, 대칭성이 개선된 InAs 양자점 형성에 InAlGaAs 장벽층의 표면 거칠기와 응력이 중요한 변수로 작용함을 확인 할 수 있었다. PL 측정 결과, 발광파장은 $1.61\;{\mu}m$로 InAs 양자구조 형상에 따라 광강도 (Intensity), 반치폭 (Line-width broadening) 등이 변화 되었다.
We have investigated optical properties of InAs quantum dots (QDs) grown on GaAs (100) substrate by molecular beam epitaxy, by means of photoluminescence (PL) and time-resolved PL spectroscopy. InAs QDs were grown by using In interruption growth technique, in which the In flux was periodically interrupted by a closed In shutter during InAs QDs growth. The shutter of In source was opened for 1 s and then closed for 0, 9, 19, 29, or 39 s. This growth sequence was repeated 30 times during QDs growth. For each sample, the total amount of In contributing to the growth was the same (30 s) but total growth time was varied during the InAs growth. As the In interruption time is increased from 0 to 19 s, the PL peak position of the QDs is red-shifted from 1096 to 1198 nm, and the PL intensity is increased. However, the PL peak is unchanged and the intensity is decreased as the In interruption time is increased further to 39 s. The PL decay times measured at the PL peak position for all the InAs QDs are independent on the QD growth conditions and showed about 1 ns. The red-shift of PL peak and the increase of PL intensity can be explained due to increased QD size and the enhancement in the migration of In atoms using In interruption technique. These results indicated that the size and shape of InAs QDs can be controlled by using In interruption growth technique. Thus the emission wavelength of the InAs QDs on GaAs substrate can also be controlled.
The valence band maximum and the conduction band miminum of GaAs, GaSb, InAs, and InSb (constituent binaries of the quaternaty alloy $Ga_xIn_{1-x}Sb_yAs_{1-y}$) are calculated by using TB analytical approach method. The band alignment types of their heterojunctions are determined directly from their relative position of band edges (VBM and CBM). For example, the GaAs/InAs, GaAs/InSb, and GaSb/InSb are in a type-I, the GaAs/GaSb in a type-II, and the GaSb/InAs and InSb/InAs in a type-III, respectively. The composition dependent VBM and CBM for the $Ga_xIn_{1-x}Sb_yAs_{1-y}$ alloy are obtained by using the univeral tight binding method. For the alloyed heterojunctions, the band alignments can be controlled by changing the composition which induce a band type transition. For the alloy $Ga_xIn_{1-x}Sb_yAs_{1-y}$ lattice mathced to GaSb, the type-II band alignment in the region of $x{\leq}0.15$ is changed to the type-III in the region of $x{\geq}0.81$. On the other hand, the alloy $Ga_xIn_{1-x}Sb_yAs_{1-y}$ lattice mathced to InAs has the type-II band alignment in the region of $x{\leq}0.15$ and the type-III band alignment in the region of $x{\geq}0.81$, respectively.
We have investigated the annealing effects on the optical properties of InAs quantum dots(QDs) capped with InGaAs(sample QDl), where InGaAs layer was deposited by opening Gallium, Arsenic, Indium and Arsenic shutters alternately with 3 periods, grown by molecular beam epitaxy. The emission wavelength of the sample of InAs QDs capped by GaAs barriers was observed to be blue-shifted as the annealing temperature was increased. On the other hand, the photoluminescence(PL) peak position of sample QD1 was observed to be red-shifted at the annealing temperature of up to $600^{\circ}C$ and, then, it was found to be blue-shifted at temperatures ranging from 700 to $800^{\circ}C$. The full width at half maximum values of sample QD1 subjected to annealing treatments show different behavior compared to typical InAs quantum dot structures.
The optical characterization of self-assembled InAs/AlAs quantum dots(QD) grown by MBE were investigated using photoreflectance spectroscopy. The intensities of the signals of the GaAs buffer and wetting layer(WL) changed with the width of the WL layer. The PR spectrum for the sample, in which QDs layer were etched off at room temperature, indicated that the broadened signal ranging $1.1{\sim}1.4\;eV$ was originated from InAs QDs and WL. The intensities of signals of GaAs buffer and the WL changed with the WL width. A red shift of the PR peak of WL are observed when the annealing temperatures range from $450^{\circ}C$ to $750^{\circ}C$, which indicates that the interdiffusion between dots and capping layer is caused by improvement in size uniformity of QDs.
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.11
no.6
/
pp.423-427
/
1998
In this paper the electron mobility in $Ga{1-X}In_xAs$alloy semiconductors is simulated by using the ensemble Monte Carlo method. The simulations for Ga\ulcornerIn\ulcornerAs with In mole fraction, doping concentration and temperature as parameters are performed. The electron mobility for alloys which perfectly orderd alloys without the alloy scattering mechanism are assumed, the results show that mobility in Ga\ulcornerIn\ulcornerAs is improved by 11%, 12% and 7% for 0.25, 0.53 and 0.75. In mole fractions, respectively, We reported the theoretical results of electron mobility in $Ga{1-X}In_xAs$alloys, so those will contribute to the research and development into materials for high-speed semiconductor devices.
Arsenic (As), which is ubiquitous throughout the environment, represents a major environmental threat at higher concentration and poses a global public health concern in certain geographic areas. Most of the conventional arsenic remediation techniques that are currently in use have certain limitations. This situation necessitates a potential remediation strategy, and in this regard bioremediation technology is increasingly important. Being the oldest representativse of life on Earth, microbes have developed various strategies to cope with hostile environments containing different toxic metals or metalloids including As. Such conditions prompted the evolution of numerous genetic systems that have enabled many microbes to utilize this metalloid in their metabolic activities. Therefore, within a certain scope bacterial isolates could be helpful for sustainable management of As-contamination. Research interest in microbial As(III) oxidation has increased recently, as oxidation of As(III) to less hazardous As(V) is viewed as a strategy to ameliorate its adverse impact. In this review, the novelty of As(III) oxidation is highlighted and the implication of As(III)-oxidizing microbes in environmental management and their prospects are also discussed. Moreover, future exploitation of As(III)-oxidizing bacteria, as potential plant growth-promoting bacteria, may add agronomic importance to their widespread utilization in managing soil quality and yield output of major field crops, in addition to reducing As accumulation and toxicity in crops.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.