• 제목/요약/키워드: InAlGaN

검색결과 393건 처리시간 0.031초

Optimization of Ohmic Contact Metallization Process for AlGaN/GaN High Electron Mobility Transistor

  • Wang, Cong;Cho, Sung-Jin;Kim, Nam-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권1호
    • /
    • pp.32-35
    • /
    • 2013
  • In this paper, a manufacturing process was developed for fabricating high-quality AlGaN/GaN high electron mobility transistors (HEMTs) on silicon carbide (SiC) substrates. Various conditions and processing methods regarding the ohmic contact and pre-metal-deposition $BCl_3$ etching processes were evaluated in terms of the device performance. In order to obtain a good ohmic contact performance, we tested a Ti/Al/Ta/Au ohmic contact metallization scheme under different rapid thermal annealing (RTA) temperature and time. A $BCl_3$-based reactive-ion etching (RIE) method was performed before the ohmic metallization, since this approach was shown to produce a better ohmic contact compared to the as-fabricated HEMTs. A HEMT with a 0.5 ${\mu}m$ gate length was fabricated using this novel manufacturing process, which exhibits a maximum drain current density of 720 mA/mm and a peak transconductance of 235 mS/mm. The X-band output power density was 6.4 W/mm with a 53% power added efficiency (PAE).

380-nm Ultraviolet Light-Emitting Diodes with InGaN/AlGaN MQW Structure

  • Bae, Sung-Bum;Kim, Sung-Bok;Kim, Dong-Churl;Nam, Eun Soo;Lim, Sung-Mook;Son, Jeong-Hwan;Jo, Yi-Sang
    • ETRI Journal
    • /
    • 제35권4호
    • /
    • pp.566-570
    • /
    • 2013
  • In this paper, we demonstrate the capabilities of 380-nm ultraviolet (UV) light-emitting diodes (LEDs) using metal organic chemical vapor deposition. The epi-structure of these LEDs consists of InGaN/AlGaN multiple quantum wells on a patterned sapphire substrate, and the devices are fabricated using a conventional LED process. The LEDs are packaged with a type of surface mount device with Al-metal. A UV LED can emit light at 383.3 nm, and its maximum output power is 118.4 mW at 350 mA.

Device Performances Related to Gate Leakage Current in Al2O3/AlGaN/GaN MISHFETs

  • Kim, Do-Kywn;Sindhuri, V.;Kim, Dong-Seok;Jo, Young-Woo;Kang, Hee-Sung;Jang, Young-In;Kang, In Man;Bae, Youngho;Hahm, Sung-Ho;Lee, Jung-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권5호
    • /
    • pp.601-608
    • /
    • 2014
  • In this paper, we have characterized the electrical properties related to gate leakage current in AlGaN/GaN MISHFETs with varying the thickness (0 to 10 nm) of $Al_2O_3$ gate insulator which also serves as a surface protection layer during high-temperature RTP. The sheet resistance of the unprotected TLM pattern after RTP was rapidly increased to $1323{\Omega}/{\square}$ from the value of $400{\Omega}/{\square}$ of the as-grown sample due to thermal damage during high temperature RTP. On the other hand, the sheet resistances of the TLM pattern protected with thin $Al_2O_3$ layer (when its thickness is larger than 5 nm) were slightly decreased after high-temperature RTP since the deposited $Al_2O_3$ layer effectively neutralizes the acceptor-like states on the surface of AlGaN layer which in turn increases the 2DEG density. AlGaN/GaN MISHFET with 8 nm-thick $Al_2O_3$ gate insulator exhibited extremely low gate leakage current of $10^{-9}A/mm$, which led to superior device performances such as a very low subthreshold swing (SS) of 80 mV/dec and high $I_{on}/I_{off}$ ratio of ${\sim}10^{10}$. The PF emission and FN tunneling models were used to characterize the gate leakage currents of the devices. The device with 5 nm-thick $Al_2O_3$ layer exhibited both PF emission and FN tunneling at relatively lower gate voltages compared to that with 8 nm-thick $Al_2O_3$ layer due to thinner $Al_2O_3$ layer, as expected. The device with 10 nm-thick $Al_2O_3$ layer, however, showed very high gate leakage current of $5.5{\times}10^{-4}A/mm$ due to poly-crystallization of the $Al_2O_3$ layer during the high-temperature RTP, which led to very poor performances.

고전압 응용분야를 위한 GaN 쇼트키 다이오드의 산화 공정 (Oxidation Process of GaN Schottky Diode for High-Voltage Applications)

  • 하민우;한민구;한철구
    • 전기학회논문지
    • /
    • 제60권12호
    • /
    • pp.2265-2269
    • /
    • 2011
  • 1 kV high-voltage GaN Schottky diode is realized using GaN-on-Si template by oxidizing Ni-Schottky contact. The Auger electron spectroscopy (AES) analysis revealed the formation of $NiO_x$ at the top of Schottky contact. The Schottky contact was changed to from Ni/Au to Ni/Ni-Au alloy/Au/$NiO_x$ by oxidation. Ni diffusion into AlGaN improves the Schottky interface and the trap-assisted tunneling current. In addition, the reverse leakage current and the isolation-leakage current are efficiently suppressed by oxidation. The isolation-leakage current was reduced about 3 orders of magnitudes. The reverse leakage current was also decreased from 2.44 A/$cm^2$ to 8.90 mA/$cm^2$ under -100 V-biased condition. The formed group-III oxides ($AlO_x$ and $GaO_x$) during the oxidation is thought to suppress the surface leakage current by passivating surface dangling bonds, N-vacancies and process damages.

Asymmetric Metal-Semiconductor-Metal Al0.24Ga0.76N UV Sensors with Surface Passivation Effect Under Local Joule Heating

  • Byeong-Jun Park;Sung-Ho Hahm
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.425-431
    • /
    • 2023
  • An asymmetric metal-semiconductor-metal Al0.24Ga0.76N ultraviolet (UV) sensor was fabricated, and the effects of local Joule heating were investigated. After dielectric breakdown, the current density under a reverse bias of 2.0 V was 1.1×10-9 A/cm2, significantly lower than 1.2×10-8 A/cm2 before dielectric breakdown; moreover, the Schottky behavior of the Ti/Al/Ni/Au electrode changed to ohmic behavior under forward bias. The UV-to-visible rejection ratio (UVRR) under a reverse bias of 7.0 V before dielectric breakdown was 87; however, this UVRR significantly increased to 578, in addition to providing highly reliable responsivity. Transmission electron microscopy revealed interdiffusion between adjacent layers, with nitrogen vacancies possibly formed owing to local Joule heating at the AlGaN/Ti/Al/Ni/Au interfaces. X-ray photoelectron microscopy results revealed decreases in the peak intensities of the O 1s binding energies associated with the Ga-O bond and OH-, which act as electron-trapping states on the AlGaN surface. The reduction in dark current owing to the proposed local heating method is expected to increase the sensing performance of UV optoelectronic integrated devices, such as active-pixel UV image sensors.

The Field Modulation Effect of a Fluoride Plasma Treatment on the Blocking Characteristics of AlGaN/GaN High Electron Mobility Transistors

  • Kim, Young-Shil;Seok, O-Gyun;Han, Min-Koo;Ha, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권4호
    • /
    • pp.148-151
    • /
    • 2011
  • We designed and fabricated aluminium gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) with stable reverse blocking characteristics established by employing a selective fluoride plasma treatment on the drainside gate edge region where the electric field is concentrated. Implanted fluoride ions caused a depolarization in the AlGaN layer and introduced an extra depletion region. The overall contour of the depletion region was expanded along the drift region. The expanded depletion region distributed the field more uniformly and reduced the field intensity peak. Through this field modulation, the leakage current was reduced to 9.3 nA and the breakdown voltage ($V_{BR}$) improved from 900 V to 1,400 V.

Pt/AIGaN 쇼트키 다이오드의 수광특성 모델링 (Modeling for UV Photo-detector with Pt/AIGaN Schottky diode)

  • 김종환;이헌복;박성종;이정희;함성호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 하계종합학술대회 논문집(2)
    • /
    • pp.605-608
    • /
    • 2004
  • A $Pt/Al_xGa_{l-x}N$ Schottky type Ultra-violet photodetector was modeled and simulated using the commercial SILVACO software program. In the carrier transport, we applied field model and other analytic model to determine the electron saturation velocity and low field mobility for GaN and $Al_xGa_{l-x}N$. A C-Interpreter function was defined to described the mole-fraction for the ternary compound semiconductor such as $Al_xGa_{l-x}N$. As comparing the simulated and experimental results, we found that the simulated result for type-1 has $15.9 nA/cm^2$ of leakage current at 5V. We confirmed a good agreement of photo-current in the UV Photo-detector, while applying the absorption coefficient and reflective index of active $Al_xGa_{l-x}N$ and other layers. There had been an intensive search for the proper refractive indices of the layers.

  • PDF

HRTEM을 이용한 비극성 GaN의 구조적 특성 분석 (Structural characterization of nonpolar GaN using high-resolution transmission electron microscopy)

  • 공보현;김동찬;김영이;안철현;한원석;최미경;배영숙;우창호;조형균;문진영;이호성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.23-23
    • /
    • 2009
  • GaN-based nitride semiconductors have attracted considerable attention in high-brightness light-emitting-diodes (LEDs) and laser diodes (LDs) covering from green to ultraviolet spectral range. LED and LD heterostructures are usually grown on (0001)-$Al_2O_3$. The large lattice mismatch between $Al_2O_3$ substrates and the GaN layers leads to a high density of defects(dislocations and stacking faults). Moreover, Ga and N atoms are arranged along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs heterostructures, stress applied along the same axis can also give rise to piezoelectric polarization. The total polarization, which is the sum of spontaneous and piezoelectric polarizations, is aligned along the [0001] direction of the wurtzite heterostructures. The change in the total polarization across the heterolayers results in high interface charge densities and spatial separation of the electron and hole wave functions, redshifting the photoluminescence peak and decreasing the peak intensity. The effect of polarization charges in the GaN-based heterostructures can be eliminated by growing along the non-polar [$11\bar{2}0$] (a-axis) or [$1\bar{1}00$] (m-axis) orientation instead of thecommonly used polar [0001] (c-axis). For non-polar GaN growth on non-polar substrates, the GaN films have high density of planar defects (basal stacking fault BSFs, prismatic stacking fault PSFs), because the SFs are formed on the basal plane (c-plane) due to their low formation energy. A significant reduction in defect density was recently achieved by applying blocking layer such as SiN, AlN, and AlGaN in non-polar GaN. In this work, we were performed systematic studies of the defects in the nonpolar GaN by conventional and high-resolution transmission electron microscopy.

  • PDF

Differences in Design Considerations between InGaN and Conventional High-Brightness Light-Emitting Diodes

  • Lee, Song-Jae
    • Journal of the Optical Society of Korea
    • /
    • 제2권1호
    • /
    • pp.13-21
    • /
    • 1998
  • Based on the escape cone concepts, high-brightness light-emitting diodes (LEDs) have been analyzed. In AlGaAs or InGaAlP LEDs, photon absorption in the ohmic region under the electrode is known to be significant. Thus, ins general, a thick window layer (WL) and a transparent substrate (TS) would minimize photon shielding by the electrodes and considerably improve photon output coupling efficiency. However, the schemes do not seem to be necessary in InGaN system. Photon absorption in ohmic contact to a wide bandgap semiconductor such as GaN may be negligible and, as a result, the significant photon shielding by the electrodes will not degrade the photon output coupling efficiency so much. The photon output coupling efficiency estimated in InGaN LEDs is about 2.5 - 2.8 times that of the conventional high-brightness LED structures based on both WL and TS schemes. As a result, the extenal quantum efficiency in InGaN LEDs is as high as 9% despite the presumably very low internal quantum efficiency.