• Title/Summary/Keyword: In-water cleaning

Search Result 648, Processing Time 0.024 seconds

Marine Algal Assemblages on Artifical Reefs in Jeju-do Before and After Rocky Cleaning and the Growth Pattern of Ecklonia cava with Water Depth (갯닦기 전후 제주도 인공어초의 해조상 및 수심별 감태의 생장양상)

  • Kwak, Cheol-Woo;Chung, Ee-Yung;Gim, Tae-Yeon;Lee, Jong-Hwa;Kim, Young-Sik
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.1
    • /
    • pp.34-48
    • /
    • 2014
  • Marine algal assemblages on the artificial reefs at three stations (Haengwon, Geumneung, Pyoseon in Jeju-do) and the growth pattern of Ecklonia cava with water depth were studied before and after rocky cleaning. Nine algal species occurred at three artificial reefs before rocky cleaning in July 2012, however, 19 algal species were found at three artificial reefs after rocky cleaning in July 2013. In particular, 13 of 19 species in 2013 were replaced by different species which were not found in July 2012. Algal biomass rapidly increased in July 2013 after rocky cleaning. The nMDS plot based on the presence and absence data of macro-algal assemblages on the artificial reefs showed that the species compositions between artificial reefs were similar to each other before rocky cleaning operations in July of 2012. However, after rocky cleaning, the species composition of macro-algal assemblages in Haengwon region was similar to that in Pyoseon region while that in Geumneung region was different to those in Haengwon and Pyseon regions in July 2013. It is needed to clarify the suitable water depth for transplantation of perennial Phaeophyta E. cava. According to the data on seasonal changes in total length, total weight, blade length, blade width, blade weight of E. cava, it began to grow rapidly from April and reached to the maximum value in June, and then degeneration of the blade occurred in July and continued to early August. Although the total length of E. cava at 10m water depth was larger than those at 5 m and 15 m water depths, there was no significant difference statistically among water depths by ANOVA test. However, in the values of total weight, blade length, blade width, and blade weight, the growth patterns at 5 m water depth were larger than those at 10 m and 15 m. Thus, it is assumed that the most suitable water depth for transplantation and its maximum growth and effective release of zoospores of E. cava will be 7~10 m water depth.

A study on Chemical Cleaning of Copper Corrosion Product in cooling system (냉각계통의 구리 부식 생성물의 화학세정에 관한 연구)

  • Lee, Han-Chul;Lee, Chang-Woo;Hyun, Seong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.140-145
    • /
    • 1999
  • This study was carried out a investigate the effect of chemical cleaning of corrosion product in cooling system made of copper and copper alloy as basic material and used cooling water as pure water. We studied chemical cleaning condition that minimizes the influence on basic material by means of EDTA solution so as to eliminate the slurry in cooling system. As a result, we found that the main components of sludge in cooling system produced by corrosion of copper were $Cu_2O$, CuO, Cu, and Fe. The optimum condition of chemical cleaning was 400 ppm EDTA solution at $60^{\circ}C$.

  • PDF

Effect of Wastewater from the in-water Cleaning Process of Ship Hull on Marine Organisms - A Review

  • Jae-Sung Rhee;Seong Hee Mun;Jee-Hyun Jung
    • Journal of Marine Life Science
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Over the past decade, there has been global expansion in the advancement of underwater cleaning technology for ship hulls. This methodology ensures both diver safety and operational efficiency. However, recent attention has been drawn to the harmful effects of ship hull-cleaning wastewater on marine animals. It is anticipated that this wastewater may have various impacts on a wide range of organisms, potentially leading to populationand ecosystem-relevant alterations. This concern is especially significant when the wastewater affects functionally important species, such as aquaculture animals and habitat-forming species living in coastal regions, where underwater cleaning platforms are commonly established. Despite this, information on the ecotoxicological effects of this wastewater remains limited. In this mini review, we discuss the adverse effects of wastewater from in-water cleaning processes, as well as the current challenges and limitations in regulating and mitigating its potential toxicity. Overall, recent findings underscore the detrimental effects posed by sublethal levels of wastewater to the health status of aquatic animals under both acute and chronic exposure.

Comparison of Filtration Resistances according to Membrane Cleaning Methods (막표면의 케이크층 세정 방법에 따른 여과 저항값 비교)

  • Han, Song-Hee;Chang, In-Soung
    • Journal of Environmental Science International
    • /
    • v.25 no.6
    • /
    • pp.817-827
    • /
    • 2016
  • The resistance in series model has been frequently used for determination of various filtration resistance to correctly understand the membrane fouling behaviour in MBR (membrane bio-reactor) for wastewater treatment. The cake layer resistance ($R_c$) which is commonly determined by calculation of flux dataset that are obtained empirically before and after removing the cake layer on membrane surface. However, the calculated Rc values are very dependent on the cleaning methods adapted for removal of cake layer. This study investigated how the various cleaning options affect $R_c$. Seven different cleaning methods were employed: i) ultrasonication (100 W, 10 min), ii) ultrasonication (200 W, 60 min), iii) ultrasonication (400 W, 120 min), iv) water rinsing in a shaker (100 rpm, 10 min), v) water rinsing in a shaker (300 rpm, 60 min), vi) water rinsing, vii) sponge scrubbing. For the hydrophilic PES membrane, the cake layer removal efficiencies ranged from 64% to 10%, indicating that the removal of cake layer was highly dependent on the cleaning options. For the hydrophobic PVDF membrane, the cake layer removal efficiencies ranged from 79% to 97%. Consequently, a standardized method for cake layer removal to determine cake resistance ($R_c$) is needed for correct interpretation of the fouling phenomena.

A Study on the Characteristics of the High Concentration Ozone Generator for the Semiconductor Wafer Cleaning with the Ozone Dissolved De-ionized Water (반도체 웨이퍼의 오존 수(水) 세정을 위한 고농도 오존발생장치 특성 연구)

  • 손영수;함상용;문세호
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.579-585
    • /
    • 2003
  • Recently the utilization of the ozone dissolved de-ionized water(DI-O3 water) in semiconductor wet cleaning process to replace the conventional RCA methods has been studied. In this paper, we propose the water-electrode type ozone generator which has the ozone gas characteristics of the high concentration and high purity to produce the high concentration DI-O3 water for the silicon wafer surface cleaning process. The ozone generator has the dual dielectric tube structure of silent discharge type and the water is both used to electrode and cooling water. We investigate the performance of the proposed ozone generator which has the design goal of the concentration of 7[wt%] and ozone generation quantity of 6[g/hr] at flow rate of 1[$\ell$/min). The experiment results show that the water electrode type ozone generator has the characteristics of 8.48[wt%] of concentration, 8.08[g/hr] of generation quantity and 76.2[g/kWh] of yield and it's possible to use the proposed ozone generator for the DI-O3 water cleaning process of silicon wafer surface.

Characteristics of Reverse Flux by using Direct Omosis in RO Membrane Process (역삼투막 공정에서 Direct Osmosis의 역방향 Flux 기초특성)

  • Kang, Il-Mo;Dock-Ko, Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.399-405
    • /
    • 2011
  • In a desalination technology using RO membranes, chemical cleaning makes damage for membrane surface and membrane life be shortened. In this research cleaning technology using direct osmosis (DO) was introduced to apply it under the condition of high pH and high concentration of feed. When the high concentration of feed is injected to the concentrate side after release of operating pressure, then backward flow occurred from treated water toward concentrated for osmotic pressure. This flow reduces fouling on the membrane surface. Namely, flux of DO was monitored under pH 3, 5, 10 and 12 conditions at feed concentrations of NaCl 40,000 mg/L, 120,000 mg/L and 160,000 mg/L. As a result, DO flux in pH 12 increased about 21% than pH 3. DO cleaning was performed under the concentrate NaCl 160,000 mg/L of pH 12 during 20 minutes. Three kinds of synthetic feed water were used as concentrates. They consisted of organic, inorganic and seawater; chemicals of SiO2 (200 mg/L), humic acid (50 mg/L) sodium alginate (50 mg/L) and seawater. As a result, fluxes were recovered to 17% in organic fouling, 15% in inorganic fouling and 14% of seawater fouling after cleaning using DO under the condition of concentrate NaCl 160,000 mg/L of pH 12.

Electrolyzed water as an alternative for environmentally-benign semiconductor cleaning chemicals

  • Ryoo, Kunkul;Kang, Byeongdoo
    • Clean Technology
    • /
    • v.7 no.3
    • /
    • pp.215-223
    • /
    • 2001
  • A present semiconductor cleaning technology is based upon RCA cleaning technology which consumes vast amounts of chemicals and ultra pure water(UPW) and is the high temperature process. Therefore, this technology gives rise to the many environmental issues, and some alternatives such as electrolyzed water(EW) are being studied. In this work, intentionally contaminated Si wafers were cleaned using the electrolyzed water. The electrolyzed water was generated by an electrolysis system which consists of three anode, cathode, and middle chambers. Oxidative water and reductive water were obtained in anode and cathode chambers, respectively. In case of NH4Cl electrolyte, the oxidation-reduction potential and pH for anode water(AW) and cathode water(CW) were measured to be +1050mV and 4.8, and -750mV and 10.0, respectively. AW and CW were deteriorated after electrolyzed, but maintained their characteristics for more than 40 minutes sufficiently enough for cleaning. Their deterioration was correlated with CO2 concentration changes dissolved from air. Contact angles of UPW, AW, and CW on DHF treated Si wafer surfaces were measured to be $65.9^{\circ}$, $66.5^{\circ}$ and $56.8^{\circ}$, respectively, which characterizes clearly the eletrolyzed water. To analyze the amount of metallic impurities on Si wafer surface, ICP-MS was introduced. It was known that AW was effective for Cu removal, while CW was more effective for Fe removal. To analyze the number of particles on Si wafer surfaces, Tencor 6220 were introduced. The particle distributions after various particle removal processes maintained the same pattern. In this work, RCA consumed about $9{\ell}$ chemicals, while EW did only $400m{\ell}$ HCl electrolyte or $600m{\ell}$ NH4Cl electrolyte. It was hence concluded that EW cleaning technology would be very effective for promoting environment, safety, and health(ESH) issues in the next generation semiconductor manufacturing.

  • PDF

A Study on Ozone Micro Bubble Effects for Solar Cell Wafer Cleaning (신개념 태양전지 세정용 오존마이크로 버블에 관한 연구)

  • Yoon, Jong-Kuk;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.94-98
    • /
    • 2012
  • The behavior of ozone micro bubble cleaning system was investigated to evaluate the solution as a new method of solar cell wafer cleaning in comparison with former conventional RCA cleaning. We have developed the ozone dissolution system in the ozonated water for more efficient cleaning conditions. The optimized cleaning conditions for solar cell wafer process were 10 ppm of ozone concentration and 12 minutes in cleaning periods, respectively. We have confirmed the cleaning reliability and cell efficiencies after ozone micro bubble cleaning. Using this new cleaning technology, it was possible to obtain higher efficiency, higher productivity, and fast tact time for applying cleaning in the fields on bare ingot wafer, LED wafers as well as the solar cell wafer.

Evaluation of Cleanness and Physical Properties of W/O Microemulsion (W/O Microemulsion 세정제의 물성 및 세정성 평가)

  • Lee, Myung Jin;Han, Ji Won;Lee, Ho Yeol;Han, Sang Won;Bae, Jae Heum;Park, Byeong Deog
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.769-777
    • /
    • 2002
  • Using four components - nonionic surfactants, water, hydrocarbon oil and an alcohol as cosurfactant, 12 types of cleaning agents were prepared, and their physical properties such as surface tension, viscosity, electroconductivity and phase stability were measured. As the formulated cleaning agents have low surface tensions(30.5-31.1 dyne/cm) and low viscosities (1.6-7.2 c.p.), they are satisfied with the general physical properties of water-in-oil(W/O) microemulsions for their industrial use. They showed a tendency that their temperature range for stable one-phase microemulsion decreased in accordance with the increase of alcohol/surfactant(A/S) ratio in the formulations. However, the temperature range of one-phase microemulsion was much more affected by hydrophilic lipophillic balance(HLB) value of the nonionic surfactant which increased its temperature range and it increased in accordance with the higher HLB value in the formulations. And the maximum content of water which can keep stable one-phase W/O microemulsion was measured at each sample. In addition, their temperature range for stable one-phase microemulsion was also measured. It was confirmed that the selection of surfactant type was very important for formulating a cleaning agent, since the W/O microemulsion system with the nonionic surfactant of the lower HLB value showed better cleaning efficacy that of the higher HLB value for abietic acid as a soil, which was used for preparing a rosin-type flux. In the formulated cleaning agents with the increase of A/S ratio in the formulations, however, there was no significant difference in cleaning efficacy. It was investigated that the differences of their cleaning efficacy was affected by the change of the condition of temperature and sonicating frequency as important factors in the industrial cleaning. That is, the higher, their cleaning temperature and the lower, their sonicating frequency, the more increased, their cleaning efficacy. Furthermore, using optical instruments like UV/Visable Spectrophotometer and FT-IR Spectrometer, their cleaning efficacy for abietic acid was measured. The removal of soil from the contaminated rinse water was measured by gravity separation method in the rinse bath. As a result, the cleaning agent system having the nonionic surfactant of HLB value 6.4 showed over 85% water-oil separation efficacy at over $25^{\circ}C$. Therefore, it was demonstrated in this work that the formulating cleaning agents were very effective for cleaning and economical in the possible introduction of water recycling system.

Development of a Rotation Swab Pig Method for Cleaning Water Pipes (상수관의 세척을 위한 회전식 스왑피그 공법 개발)

  • Kicheol Lee;Jaeho Kim;Kisung Kim;Jeongjun Park
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.63-75
    • /
    • 2024
  • Drinking water is an essential element to ensure the basic human right to live, and the quality of clean water must always be ensured. However, domestic water facilities, which were installed intensively in the early 2000s, are deteriorating. The accidents such as discoloration of water such as chromaticity and turbidity as well as leakage of substances frequently occur. However, since it is virtually impossible to replace all water pipes, the detailed standards for maintenance of water pipe network facilities established in 2021 require water pipe cleaning. The swab pig method, one of the water pipe cleaning methods, is a method of physically removing substances in pipes and is evaluated as having the highest cleaning efficiency. However, Swab is highly likely to be damaged or deformed during the cleaning process, and may even be lost. Therefore, in this study, the material of the pig was changed to a material with high compressibility, and it was made as close as possible to the inner wall of the water pipe. And, to maximize cleaning efficiency, a rotation swab pig with a rotation blade was developed. In addition, high-strength wire and winding equipment were additionally developed to eliminate the possibility of loss and to determine the location of the pig. The inlet and outlet are connected with wires, and after verifying the performance of each detailed technology, the technology was applied on a test bed with a 30m section. As a result of the application, the performance of the technology was verified by measuring the process time and evaluating applicability.