• Title/Summary/Keyword: In-water cleaning

Search Result 652, Processing Time 0.032 seconds

Bioremedation of petrolium pollution (유류오염의 미생물학적 제어)

  • 이상준;차미선;이근희
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.02a
    • /
    • pp.14-28
    • /
    • 2001
  • As basic study for purpose bioremedation in oil-contaminated environment, Primarily, we isolated biosurfactant producer- strains utilized of oil-agar plate, and measured surface tension and emulsifying activity. We investigated in oil-contaminated soil and sea water. In this laboratory, Pseudomonas sp. EL-012S strain isolated from oil-contaminated soil was able to product novel biosurfactant under the optimal culture condition. Its condition was n-hexadecane 2.0%, NH$_4$NO$_3$0.4%, Na$_2$HPO$_4$0.6%, KH$_2$PO$_4$0.4%, MgSO$_4$.7$H_2O$ 0.02%, CaCl$_2$.2$H_2O$ 0.001%, FeSO.7$H_2O$ 0.001%, initial pH 7.0 and aeration at 3$0^{\circ}C$, respectively. This biosurfactant was produced in both late-exponential and early-stationary phase. The biosurfactant from Pseudomonas sp. EL-012S was composed of carbohydrate, lipid and protein. The purified-biosurfactant was examined two (biosurfactant type I, II) with the silica gel G60 column chromatography and the purified biosurfactant confirmed thin layer chromatography, high performed liquid chromatography and gas chromatography. The biosurfactant type I involved in carbohydrate-lipid-protein characteristics lowered surface tension of water to 27dyne/cm and interfacial tension 4.5dyne/cm aginst to n-hexadecane and the biosurfactant type B involved in carbohydrate lipid characteristics lowered surface tension of water to 30dyne/cm and interfacial tension 8dyne/cm against to n-hexadecane. Specially type I had the properties such as strong emulsifying activity, emulsion stability, pH-stability, thermo-stability, high cleaning activity and forming ability.

  • PDF

Preparation of highly hydrophobic PVDF hollow fiber composite membrane with lotus leaf-like surface and its desalination properties

  • Li, Hongbin;Zi, Xingchen;Shi, Wenying;Qin, Longwei;Zhang, Haixia;Qin, Xiaohong
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.287-298
    • /
    • 2019
  • Lotus leaf has a special dual micro and nano surface structure which gives its highly hydrophobic surface characteristics and so-called self cleaning effect. In order to endow PVDF hollow fiber membrane with this special structure and improve the hydrophobicity of membrane surface, PVDF hollow fiber composite membranes was obtained through the immersion coating of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) dilute solution on the outside surface of PVDF support membrane. The prepared PVDF composite membranes were used in the vacuum membrane distillation (VMD) for the desalination. The effects of PVDF-HFP dilute solution concentration in the dope solution and coating time on VMD separation performance was studied. Membranes were characterized by SEM, WCA measurement, porosity, and liquid entry pressure of water. VMD test was carried out using $35g{\cdot}L^{-1}$ NaCl aqueous solution as the feed solution at feed temperature of $30^{\circ}C$ and the permeate pressure of 31.3 kPa. The vapour flux reached a maximum when PVDF-HFP concentration in the dilute solution was 5 wt% and the coating time was kept in the range of 10-60 s. This was attributed to the well configuration of micro-nano rods which was similar with the dual micro-nano structure on the lotus leaf. Compared with the original PVDF membrane, the salt rejection can be well maintained which was greater than 99.99 % meanwhile permeation water conductivity was kept at a low value of $7-9{\mu}S{\cdot}cm^{-1}$ during the continuous testing for 360 h.

An early fouling alarm method for a ceramic microfiltration pilot plant using machine learning (머신러닝을 활용한 세라믹 정밀여과 파일럿 플랜트의 파울링 조기 경보 방법)

  • Dohyun Tak;Dongkeon Kim;Jongmin Jeon;Suhan Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.5
    • /
    • pp.271-279
    • /
    • 2023
  • Fouling is an inevitable problem in membrane water treatment plant. It can be measured by trans-membrane pressure (TMP) in the constant flux operation, and chemical cleaning is carried out when TMP reaches a critical value. An early fouilng alarm is defined as warning the critical TMP value appearance in advance. The alarming method was developed using one of machine learning algorithms, decision tree, and applied to a ceramic microfiltration (MF) pilot plant. First, the decision tree model that classifies the normal/abnormal state of the filtration cycle of the ceramic MF pilot plant was developed and it was then used to make the early fouling alarm method. The accuracy of the classification model was up to 96.2% and the time for the early warning was when abnormal cycles occurred three times in a row. The early fouling alram can expect reaching a limit TMP in advance (e.g., 15-174 hours). By adopting TMP increasing rate and backwash efficiency as machine learning variables, the model accuracy and the reliability of the early fouling alarm method were increased, respectively.

Long Term Operation of Microfiltration Membrane Pilot Plant for Drinking Water Treatment (정수처리를 위한 정밀여과막 모형플랜트의 장기운전 특성)

  • Kim, Chung H.;Lee, Byung G.;Lim, Jae L.;Kim, Seong S.;Lee, Kyeong H.;Chae, Seon H.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.493-501
    • /
    • 2007
  • The membrane pilot plant has being operated in the Hyeondo pumping station to find the optimal operation technique of Gong-Ju membrane water treatment plant (WTP) which is constructing in $250m^3/d$ scale. The pilot plant was consisted of two trains which can treat $30,000m^3/d$ per train. First train was operated for one year under the condition of flux $1m^3/m^2{\cdot}d$ while the effects of flux variation and addition of powdered activated carbon(PAC) were evaluated in second train. The turbidity of membrane product water of first train which is operated on Flux $1m^3/m^2{\cdot}d$ was always below 0.05 NTU regardless of raw water turbidity. And also, the trance-membrane pressure(TMP) was maintained at $0.3{\sim}0.5kgf/cm^2$ for about 9 months and increased rapidly to $1.8kgf/cm^2$ which is maximum operating TMP. However, TMP was rapidly increased to $1.8kgf/cm^2$ within 2 months as flux was increased from 1 to $2m^3/m^2{\cdot}d$, especially, within 10 days under high turbidity(30~50NTU). This reault means that if Gongju membrane WTP is operated in flux $1m^3/m^2{\cdot}d$, chemical cleaning period can be maintained over 6 months. Only 10% of dissolved organic carbon (DOC) was removed in membrane process while the removal efficiencies of manganese and iron were 60% and 77% respectively. However, because only solid manganese and iron were removed in membrane process, an additional process for treating soluble manganese is required if souble manganese is high in raw water. 70% of 70ng/L 2-MIB which is causing taste & odor was removed in powdered activated carbon (PAC) tank with 50mg/L PAC which is design concentration of Gongju WTP. In addition, TMP was reduced with addition of 50mg/L PAC regardless of flux. Because TMP was not influenced even if 100mg/L PAC was added, the high taste and odor problem can be controled by additional injection of PAC.

Effect of pH, Saturated Oxygen, and Back-flushing Media in Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst-loaded PES Beads (관형 세라믹 정밀여과와 광촉매 첨가 PES 구의 혼성수처리에서 pH 및 포화산소, 역세척 매체의 영향)

  • Hong, Sung Taek;Park, Jin Yong
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.123-135
    • /
    • 2014
  • The effects of pH, saturated oxygen, and back-flushing media were investigated in hybrid process of tubular ceramic microfiltration and $TiO_2$ photocatalyst-loaded PES (polyethersulfone) beads for advanced drinking water treatment, and compared results of water, nitrogen, or oxygen back-flushing in the viewpoints of membrane fouling resistance ($R_f$), permeate flux (J) and total treated water ($V_T$). $R_f$ decreased, and J and $V_T$ increased as decreasing pH. Turbidity treatment efficiencies were similar at water or nitrogen back-flushing independent of pH, but DOM (dissolved organic matter) treatment efficiency did not have a trend at water back-flushing. $R_f$ at NBF (no back-flushing) with SO (saturated oxygen) was the lower than that at NBF without SO. Also, the DOM treatment efficiency at NBF with SO was the lower than that at NBF without SO. It happened because OH radicals produced by reaction of SO and photocatalyst could dilute with water inside the module. The DOM treatment efficiency of gas back-flushing showed the larger than that of water back-flushing at back-flushig period 10 min. It proved that the adsorption or photo-oxidation of PES beads could be activated by the more effective bead-cleaning of gas back-flushing than water back-flushing.

Reaction Path Modeling of Granitic Cultural Properties and Its Implication for Preservation (화강암질 석조문화재의 풍화반응경로 특성과 보존에 대한 제언)

  • Park Maeng-Eon;Sung Kyu-Youl
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.83-92
    • /
    • 2005
  • Dissolution rate of minerals may differ from climates configuration, but weathering rate of feldspars is generally proved to be relatively higher The result of geochemical reaction modeling indicates the acid water of pH 4.5 excluding any other variables, was 2.3 times higher than that in ordinary rain of pH 5.7. This result proved that pH is very important factor in preservation of granite cultural properties. To prevent the weathering of stone cultural properties, weathering characteristics of stones should be studied first and constitution of dry environments, using water repellent or oil coating, isolating water which cause chemical weathering reaction like hydration and oxidization should be considered. Considering the long-term reactions between granite and rain, selection of materials, which can bring neutralization and non-oxidization conditions, are very important in using cleaning agents and biological controls.

A Study on Rust Cleaning of Various Industrial Equipment Using Cosmetic and Food Materials (화장품과 식품 재료를 이용한 각종 산업장비 녹(rust) 세정에 관한 연구)

  • Yeom, Seok-Jae;Jung, Sundo;Oh, Eunha
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.19-28
    • /
    • 2021
  • Corrosion is the degradation of metals by reaction with the environment. It is difficult to completely remove. Corrosion proceeds rapidly after the protective barrier is destroyed, and several reactions occur that alter the composition and properties of the metal surface and local environments, such as diffusion of metal cations into the matrix, the formation of oxides, and local pH changes. The study of corrosion of steel and iron is of theoretical and practical interest and is receiving considerable attention. Acid solutions, which are widely used in industrial pickling, acid descaling, cleaning and acidification of oil wells, require the use of corrosion inhibitors to suppress corrosion attacks on metallic materials. Physical removal of rust requires expensive special equipment, and chemical removal of it can cause corrosion or shorten the life of the metal. In this study, an eco-friendly rust cleaner was developed using cosmetics and food materials by applying the concept of perm reducing agent and chelate, and applied to remove rust from industrial and hot water pipes and various industrial devices. As a result, it was found that rust cleaners remove rust more effectively and safely compared to conventional treatment methods. At the same time, the rust removal efficiency was 1.75 to 2.5 times better for industrial piping and 1.56 to 2.2 times better for boiler hot water than conventional methods.

Application of Ceramic MF Membrane at the Slow Sand Filtration Process (완속모래여과 공정에서 세라믹 MF 막의 적용)

  • Choi, Kwang-Hun;Park, Jong-Yul;Kim, Su-Han;Kim, Jeong-Sook;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.877-882
    • /
    • 2013
  • The application of ultrafiltration (UF) and microfiltration (MF) membranes has been increased for drinking water purification. The advantages of UF/MF membrane process compared to conventional treatment processes are stable operation under varying feed water quality, smaller construction area, and automatic operation. Most membrane treatment plants are designed with polymeric membranes. Recently, some studies suggested that the process of treating surface water with ceramic membranes is competitive to the application of polymeric membranes. Higher water flux, less frequent cleaning, and much longer lifetime are the advantages of ceramic membrane comparing to polymeric membrane. Therefore, this research focused on the application of ceramic MF membrane pilot plant at the slow sand filtration plant. The ceramic membrane pilot plant has three trains that used raw water and sand filtered water as a feed water, respectively. For optimizing the pilot plant process, the coagulation with PACl coagulant was used as a pretreatment of ceramic membrane process. In addition, CEB (Chemical Enhanced Backwash) process using $H_2SO_4$ and NaOCl was used for 1.5 days, respectively. The experimental results showed that applying the optimum coagulant dose before membrane filtration showed enhancing membrane fluxes for both raw water and sand filtered water. Also, when using raw water as a feed of membrane, minimum fouling rate was 2.173 kPa/cycle with 25 mg/L of PACl and when using sand filtered water, the minimum fouling rate was 0.301 kPa/cycle with 5 mg/L of PACl.

Applicable Properties of Electrolyzed Acid-Water as Cleaning Water (세정수로서의 전해산화수 적용 특성)

  • 정진웅;정승원;김명호
    • Food Science and Preservation
    • /
    • v.7 no.4
    • /
    • pp.395-402
    • /
    • 2000
  • To enlarge application field of electrolyzed acid-water(EAW) on food industry, the changes of EAW properties by storage conditions and heating were investigatet. It was showed that storing EAW in closed container is mon effective to keep up the oxidation-reduction potentials(ORP), hyperchloride content and pH than stored in opened ones. ORP of EAW stored in closed container could be kept mon than 1 month as 1,150 mV levels. Ruing heating from 2$0^{\circ}C$ to 95$^{\circ}C$, ORP was increased to 1,150 mV levels at 95$^{\circ}C$ after gradual decrease to 5$0^{\circ}C$. Tyrosinase activity was decreased approximately to 26%~35% in EAW having a 950 mV~1,140 mV ORP. Also it was confirmed that EAW has anti-browning effect as sliced apple and potato, and their juices treated with EAW had conspicous difference in their $\Delta$E value. 12 kinds of pesticides such as aldrine, capful diazinon, diedrin, $\alpha$-endosulfan $\beta$-endosulfan, endosulfan sulfate, endrin, $\alpha$-BHC, o,p'-DDT, procymidone, PCNB added in EAW were recovered from ND~73.6% comparing to ones added in distilled water. The recovered amounts of pesticides, procymidone and diazinon in lettuce after soaking in EAW were 1.12 ppm and ND, compared with those of amounts soaked in distilled water were 3.67 ppm and 3.05 ppm respectively. So, it seems that EAW has potentials to promote the degradation of pesticides.

  • PDF

Research on Step-Type Chemical Liquid Deodorizer using Liquid Catalyst

  • WOO, Hyun-Jin;KWON, Lee-Seung;JUNG, Min-Jae;YEO, Og-Gyu;KIM, Young-Do;KWON, Woo-Taeg
    • The Korean Journal of Food & Health Convergence
    • /
    • v.6 no.5
    • /
    • pp.19-25
    • /
    • 2020
  • The purpose of this study was to research and develop a step-type chemical liquid deodorizer including a liquid catalyst that can prevent civil complaints due to odor due to its excellent deodorizing performance. The main composition of chemical liquid deodorizer including liquid catalyst is cleaning deodorization, catalyst deodorization, chemical deodorization, water film plate, deodorization water circulation device, deodorization water injection device, catalyst management system, gas-liquid separation device, chemical supply device, deodorizer control panel, etc. It consists of a device. The air flow of the step-type liquid catalyst chemical liquid deodorizer is a technology that firstly removes basic odor substances, and the liquid catalyst installed in the subsequent process stably removes sulfur compounds, which are acidic odor substances, to discharge clean air. The efficiency of treating the complex odor of the prototype was 98.5% for the first and 99.6% for the second, achieving the target of 95%. The hydrogen sulfide treatment efficiency of the prototype was 100% for the first and 99.9% for the second, which achieved 95%, which was the target of the project. As a result, ammonia was removed by the reaction of ammonia and hydrogen sulfide.