• 제목/요약/키워드: In-process Detection

검색결과 3,508건 처리시간 0.038초

A new perspective towards the development of robust data-driven intrusion detection for industrial control systems

  • Ayodeji, Abiodun;Liu, Yong-kuo;Chao, Nan;Yang, Li-qun
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2687-2698
    • /
    • 2020
  • Most of the machine learning-based intrusion detection tools developed for Industrial Control Systems (ICS) are trained on network packet captures, and they rely on monitoring network layer traffic alone for intrusion detection. This approach produces weak intrusion detection systems, as ICS cyber-attacks have a real and significant impact on the process variables. A limited number of researchers consider integrating process measurements. However, in complex systems, process variable changes could result from different combinations of abnormal occurrences. This paper examines recent advances in intrusion detection algorithms, their limitations, challenges and the status of their application in critical infrastructures. We also introduce the discussion on the similarities and conflicts observed in the development of machine learning tools and techniques for fault diagnosis and cybersecurity in the protection of complex systems and the need to establish a clear difference between them. As a case study, we discuss special characteristics in nuclear power control systems and the factors that constraint the direct integration of security algorithms. Moreover, we discuss data reliability issues and present references and direct URL to recent open-source data repositories to aid researchers in developing data-driven ICS intrusion detection systems.

지능형 도로정보체계의 유지관리 지식기반 구축을 위한 온라인 고장검출 시스템 연구 (A Study on the Online Fault Detection System to construct the knowledge based Maintenance System of Intelligent Highway Information System)

  • 류승기;최도혁;최대순;문학룡;김영춘;홍규장
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.677-679
    • /
    • 1999
  • This paper introduces a implementation of fault detection for national highway line 3. Fault detection system was installed and operated on national highway line 3, environmental elements caused by abnormal status or faults has often happened. Therefore, the function of fault detection system is to speedy notify fault site, cause as well as scale of fault to manager. Though the fault detection and diagnosis system has been imported in the field of process of water and electric power, it is just beginning step in the field of ITS(Intelligent Transportation Systems). In general, Maintenance system is performed the online/offline process of detection, diagnosis and measure. This paper is studied online detection process, which is realtime remote detection.

  • PDF

프로세스 마이닝을 위한 거리 기반의 API(Anomaly Process Instance) 탐지법 (Detection of API(Anomaly Process Instance) Based on Distance for Process Mining)

  • 전대욱;배혜림
    • 대한산업공학회지
    • /
    • 제41권6호
    • /
    • pp.540-550
    • /
    • 2015
  • There have been many attempts to find knowledge from data using conventional statistics, data mining, artificial intelligence, machine learning and pattern recognition. In those research areas, knowledge is approached in two ways. Firstly, researchers discover knowledge represented in general features for universal recognition, and secondly, they discover exceptional and distinctive features. In process mining, an instance is sequential information bounded by case ID, known as process instance. Here, an exceptional process instance can cause a problem in the analysis and discovery algorithm. Hence, in this paper we develop a method to detect the knowledge of exceptional and distinctive features when performing process mining. We propose a method for anomaly detection named Distance-based Anomaly Process Instance Detection (DAPID) which utilizes distance between process instances. DAPID contributes to a discovery of distinctive characteristic of process instance. For verifying the suggested methodology, we discovered characteristics of exceptional situations from log data. Additionally, we experiment on real data from a domestic port terminal to demonstrate our proposed methodology.

Implementation of Effective Automatic Foreground Motion Detection Using Color Information

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권6호
    • /
    • pp.131-140
    • /
    • 2017
  • As video equipments such as CCTV are used for various purposes in fields of society, digital video data processing technology such as automatic motion detection is essential. In this paper, we proposed and implemented a more stable and accurate motion detection system based on background subtraction technique. We could improve the accuracy and stability of motion detection over existing methods by efficiently processing color information of digital image data. We divided the procedure of color information processing into each components of color information : brightness component, color component of color information and merge them. We can process each component's characteristics with maximum consideration. Our color information processing provides more efficient color information in motion detection than the existing methods. We improved the success rate of motion detection by our background update process that analyzed the characteristics of the moving background in the natural environment and reflected it to the background image.

Fault Detection of Plasma Etching Processes with OES and Impedance at CCP Etcher

  • Choi, Sang-Hyuk;Jang, Hae-Gyu;Chae, Hee-Yeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.257-257
    • /
    • 2012
  • Fault detection was carried out in a etcher of capacitive coupled plasma with OES (Optical Emission Spectroscopy) and impedance by VI probe that are widely used for process control and monitoring at semiconductor industry. The experiment was operated at conventional Ar and Fluorocarbon plasma with variable change such as pressure and addition of N2 and O2 to assume atmospheric leak, RF power and pressure that are highly possible to impact wafer yield during wafer process, in order to observe OES and VI Probe signals. The sensitivity change on OES and Impedance by VI probe was analyzed by statistical method including PCA to determine healthy of process. The main goal of this study is to find feasibility and limitation of OES and Impedances for fault detection by shift of plasma characteristics and to enhance capability of fault detection using PCA.

  • PDF

Wavelet을 이용하여 하드터닝 공정에서 표면품위의 향상을 위한 채터 진단에 관한 연구 (Chatter Detection for Improving Surface Quality of Hard Turning Process with Wavelet Transformation)

  • 박영호;공정흥;양희남;김일해;장동영;한동철
    • 대한기계학회논문집A
    • /
    • 제28권1호
    • /
    • pp.70-78
    • /
    • 2004
  • This paper presents study of efficiency of wavelet transformation for on-line chatter detection during hard fuming process. From comparison with other time series and statistical methods such as fast fourier transformation (FFT), Kurtosis and standard deviation (STD), wavelet transform is better than others in on-line chatter detection. With using wavelet function with pseudo frequency corresponding to chatter frequency, chatter could be detected more sensitively. And for both force signal from dynamometer and displacement signal from capacitance type cylindrical sensor (CCS), wavelet transform with DB2 function on level 4 could be well used for chatter detection in hard turning process.

LIME을 활용한 준지도 학습 기반 이상 탐지 모델: 반도체 공정을 중심으로 (Anomaly Detection Model Based on Semi-Supervised Learning Using LIME: Focusing on Semiconductor Process)

  • 안강민;신주은;백동현
    • 산업경영시스템학회지
    • /
    • 제45권4호
    • /
    • pp.86-98
    • /
    • 2022
  • Recently, many studies have been conducted to improve quality by applying machine learning models to semiconductor manufacturing process data. However, in the semiconductor manufacturing process, the ratio of good products is much higher than that of defective products, so the problem of data imbalance is serious in terms of machine learning. In addition, since the number of features of data used in machine learning is very large, it is very important to perform machine learning by extracting only important features from among them to increase accuracy and utilization. This study proposes an anomaly detection methodology that can learn excellently despite data imbalance and high-dimensional characteristics of semiconductor process data. The anomaly detection methodology applies the LIME algorithm after applying the SMOTE method and the RFECV method. The proposed methodology analyzes the classification result of the anomaly classification model, detects the cause of the anomaly, and derives a semiconductor process requiring action. The proposed methodology confirmed applicability and feasibility through application of cases.

Real-time Fault Detection in Semiconductor Manufacturing Process : Research with Jade Solution Company

  • Kim, Byung Joo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제9권2호
    • /
    • pp.20-26
    • /
    • 2017
  • Process control is crucial in many industries, especially in semiconductor manufacturing. In such large-volume multistage manufacturing systems, a product has to go through a very large number of processing steps with reentrant) before being completed. This manufacturing system has many machines of different types for processing a high mix of products. Each process step has specific quality standards and most of them have nonlinear dynamics due to physical and/or chemical reactions. Moreover, many of the processing steps suffer from drift or disturbance. To assure high stability and yield, on-line quality monitoring of the wafers is required. In this paper we develop a real-time fault detection system on semiconductor manufacturing process. Proposed system is superior to other incremental fault detection system and shows similar performance compared to batch way.

자동차 부품제조 사업장의 유해인자 노출 농도수준 및 검출율 - 알루미늄 다이캐스팅 공정을 중심으로 - (Evaluationof Exposure Levels and Detection Rate of Hazardous Factors in the Working Environment, Focused on the Aluminum Die Casting Process in the Automobile Manufacturing Industry)

  • 이덕희;문찬석
    • 한국산업보건학회지
    • /
    • 제28권1호
    • /
    • pp.100-107
    • /
    • 2018
  • Objectives: This study examines exposure to hazardous substances in the working environment caused by exposure to toxic substances produced in the aluminum die casting process in the automobile manufacturing industry. Materials and Methods: The exposure concentration levels, detection rates and time-trend of 15 hazardous factors in the aluminum die casting process over 10 years(from 2006 to 2016) were used as a database. Results: The study found that hazardous factors in the aluminum die casting process were mostly metals. The rate for detected samples was 70.6%(405 samples), and that for not detected samples was 29.4%. The noise for an eight-hour work shift showed a 49.7% exceedance rate for TLV-TWA. Average noise exposure was 89.0 dB. The maximum exposure level was 105.1 dB. Conclusion: The high numbers of no-detection rates for hazardous substance exposure shows that there is no need to do a work environment measurement. Therefore, alternatives are necessary for improving the efficiency and reliability of the work environment measurement. Moreover, to prevent noise damage, reducing noise sources from automation, shielding, or sound absorbents are necessary.

Detection Technique of Fault Phenomena Using Power Parameters in Grinding Process

  • Kwak, Jae-Seob;Ha, Man-Kyung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권1호
    • /
    • pp.5-12
    • /
    • 2002
  • The grinding process has been mainly used fur finishing metal products as final machining stage. But chatter vibration and bum of a workpiece have a bad effect on the machined surface and should be detected in modern grinding process. This paper deals with a fault detection of the cylindrical plunge grinding process by power parameters. During the grinding process the power signals of an induced motor were sampled and used to determine the relationship between fault and change of power parameters. A neural network was used far detecting the grinding fault and an influence of power parameters to the grinding fault was analyzed.