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Abstract 

Process control is crucial in many industries, especially in semiconductor manufacturing. In such large-

volume multistage manufacturing systems, a product has to go through a very large number of processing 

steps with reentrant) before being completed. This manufacturing system has many machines of different 

types for processing a high mix of products. Each process step has specific quality standards and most of 

them have nonlinear dynamics due to physical and/or chemical reactions. Moreover, many of the processing 

steps suffer from drift or disturbance. To assure high stability and yield, on-line quality monitoring of the 

wafers is required. In this paper we develop a real-time fault detection system on semiconductor 

manufacturing process. Proposed system is superior to other incremental fault detection system and shows 

similar performance compared to batch way. 
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1. Introduction 

Fault detection in semiconductor manufacturing process is a hot research topic as more and more sensor 

data are being collected throughout the industrial process. Many machine learning algorithms used in pattern 

classification are now being utilized in fault detection. Dimension reduction techniques, such as principal 

component analysis, partial least squares, and Fisher’s discriminant analysis have been applied to detect 

faults in chemical processes[1][2]. Support vector machine and artificial neural networks are also widely 

used methods for fault detection; they have been applied to gearbox failure detection[3] and chemical 

process fault diagnosis[4]. K-Nearest Neighbor and fuzzy-logic are two other powerful methods that have 

been used to detect faults in semiconductor manufacturing processes[5] and mechanical systems [6]. Tree 

based algorithms such as random forest and gradient boosted tree are useful machine learning algorithms in 

situations where one expects nonlinear and interactive effects between covariates. They have been applied to 

fault detection in aircraft system[7]. Recently kernel trick has been applied to PCA and is based on a 

formulation of PCA in terms of the dot product matrix instead of the covariance matr ix[8]. Kernel
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PCA(KPCA), however, requires storing and finding the eigenvectors of a NN   kernel matrix where N is 

a number of patterns. It is infeasible method for when N is large. This fact has motivated the development of 

empirical kernel method which does not store the kernel matrix. In this paper we propose a method that 

allows for incremental eigenspace update method by incremental kernel PCA for detecting the wafer fault. 

Paper is organized as follows. In Section 2 we will briefly explain the incremental PCA method. In Section 3 

KPCA and conjugate least squares support vector machine(LS-SVM) are introduced and to make KPCA 

incrementally, empirical kernel map method is explained. Experimental results to evaluate the performance 

of proposed method is shown in Section 4. Discussion of proposed method and future work is described in 

Section 5. 

 

2. Incremental PCA 

In this section, we will give a brief introduction to the method of incremental PCA algorithm which 

overcomes the computational complexity of standard PCA. Before continuing, a note on notation is in order. 

Vectors are columns, and the size of a vector, or matrix, where it is important, is denoted with subscripts. 

Particular column vectors within a matrix are denoted with a superscript, while a superscript on a vector 

denotes a particular observation from a set of observations, so we treat observations as column vectors of a 

matrix. As an example, 
i

mnA is the ith column vector in a nm  matrix. We denote a column extension to a matrix using square 

brackets. Thus ][ bAmn  is an(m × (n + 1)) matrix, with vector b appended to mnA  as a last column. 

To explain the incremental PCA, we assume that we have already built a set of eigenvectors 

],,1,[ kjuU j   after having trained the input images Nixi ,,,  . The corresponding eigenvalues are 

Λ and   is the mean of input image. Incremental building of eigenspace requires updating these 

eigenspace to take into account of a new input image. Here we give a brief summarization of the method 

which is described in [9]. First, we update the mean: 
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We then update the set of eigenvectors to reflect the new input image and to apply a rotational transformation 

to U . For doing this, it is necessary to compute the orthogonal residual vector 11 )( 



 NN xxUah  

where 

1Na  is principal component and normalize it to obtain 
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otherwise. We obtain the new matrix of eigenvectors 
'U  by appending 1Nh  to the eigenvectors U and 

rotating them : 

RhUU N ],[ 1

'

                                     (2) 

where R∈ )1()1(  kk  is a rotation matrix. R is the solution of the eigenspace of the following form: 

' RDR                                        (3) 

where 
' is a diagonal matrix of new eigenvalues. We compose D ∈ )1()1(  kk as: 
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where )( 11 xxh N

T

N    and )( 1 xxUa N

T   . Though there are other ways to construct matrix D [8][9], 

the only method ,however, described in [9] allows for the updating of mean. 
 

2.1  Updating Image Representations 

The incremental PCA represents the input image with principal components )(Nia  and it can be 

approximated as follows: 


 xUax NiNi )()(                                   (5) 

To update the principal components )(Nia  for a new image 1Nx , computing an auxiliary vector η is 

necessary. η is calculated as follows: 
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 then the computation of all principal components is 
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The transformations described above yield a model that represents the input images with the same accuracy 

as the previous one, therefore we can now discard the old subspace and the coefficients that represent the 

image in it. 1Nx  is represented accurately as well, so we can safely discard it. The representation of all N + 

1 images are possible because the subspace is spanned by k +1eigenvector. Due to the increase of the 

dimensionality by one, however, more storage is required to represent the data. If we try to keep a k-

dimensional eigenspace, we lose a certain amount of information. In order to balance the storage 

requirements with the level of accuracy, it is needed for us to set the criterion on retaining the number of 

eigenvectors. There is no explicit guideline for retaining a number of eigenvectors. 

In this paper we set our criterion on adding an eigenvector as  7.01
' K  where   is a mean of the λ. 

Based on this rule, we decide whether adding 
'

1Ku  or not. 

 

2.2  Empirical Feature Map 

A prerequisite of the incremental eigenspace update method is that it has to be applied on the data set. 

Furthermore incremental PCA builds the subspace of eigenvectors incrementally, it is restricted to apply the 

linear data. But in the case of KPCA this data set )( Nx  is high dimensional and most of the time can not 

even be calculated explicit ly. For the case of nonlinear data set, applying feature mapping function method 

to incremental PCA may be one of the solutions. This is performed by so-called kernel-trick , which means 

an implicit embedding to an infinite dimensional Hilbert space[8] (i.e. feature space) F . 

K (x, y)= Φ(x) · Φ(y )                                 (8) 

Where K is a given kernel function in an input space. When K is semi positive definite, the existence of Φ is 

proven[8]. Most of the case, however, the mapping Φ is high-dimensional and cannot be obtained explicitly. 

The vector in the feature space is not observable and only the inner product between vectors can be observed 
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via a kernel function. However, for a given data set, it is possible to approximate Φ by empirical kernel map 

proposed by Scholkopf and Tsuda[8] which is defined as 
Nd

N  :  

T

NN xxxxx )]()(,),()([)( 1   T

N xxKxxK )],(,),,([ 1               (9) 

A performance evaluation of empirical kernel map was shown by Tsuda. He shows that support vector 

machine with an empirical kernel map is identical with the conventional kernel map[12]. The empirical 

kernel map )( NN x , however, do not form an orthonormal basis in 
N , the dot product in this space is 

not the ordinary dot product. In the case of KPCA , however, we can be ignored as the following argument. 

The idea is that we have to perform linear PCA on the )( NN x  from the empirical kernel map and thus 

diagonalize its covariance matrix. Let the N × N matrix  )](,),(),([ 21 NNNN xxx   , then from 

equation (9) and definition of the kernel matrix we can construct Ψ = NK. The covariance matrix of the 

empirically mapped data is: 

21
NKNKK

N
C TT                         (10) 

In case of empirical kernel map, we diagonalize 
2NK instead of K as in KPCA. Mika shows that the two 

matrices have the same eigenvectors }{ ku  [12]. The eigenvalues }{ k  of K are related to the eigenvalues 

}{ kK of 
2NK by 

N

Kk
k                                       (11) 

and as before we can normalize the eigenvectors }{ kv  for the covariance matrix C of the data by 

dividing each }{ ku  by Nk . Instead of actually diagonalize the covariance matrix  C , the 

incremental KPCA is applied directly on the mapped data Ψ = NK. This makes it easy for us to adapt the 

incremental eigenspace update method to KPCA such that it is also correctly takes into account the centering 

of the mapped data in an incremental way. By this result, we only need to apply the empirical map to one 

data point at a time and do not need to store the N × N kernel matrix. 

 

3. Conjugate LS-SVM  

Support vector machines(SVM) developed by Vapnik[8] and it is a powerful methodology for solving 

problems in nonlinear classification. Originally, it has been introduced within the context of statistical 

learning theory and structural risk minimization. In the methods one solves convex optimization problems, 

typically by quadratic programming(QP). Solving QP problem requires complicated computational effort and 

need more memory requirement. LS-SVM[10] overcomes this problem by solving a set of linear equations in 

the problem formulation. LS-SVM method is computationally attractive and easier to extend than SVM. But 

traditional batch way LS-SVM requires storing (N+1) × (N+1) matrix where N is a number of patterns. It is 

infeasible method when dealing with image data because its size is big. For image data sets the use of 

iterative methods is recommended. In principle, various methods can be used at this point including 

SOR(Successive Over-Relaxation), CG(Conjugate Gradient), GMRES(Generalized Minimal Residual) etc. 

However, not all of these iterative methods can be applied to any kind of linear system. For example, in order 

to apply CG the matrix should be positive definite. Due to the presence of the b bias term in the LS-SVM 

model the resulting matrix is not positive definite. So before we can apply such methods we have to 

transform the linear system into a positive definite system. The LS-SVM KKT system is of the form  
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ξ2
] = [
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more specifically with H = Ω+ I/γ, ξ1 = b, ξ2 = α, d1 =  0, d2 =  Iv. This can be transformed into 

[
s 0
0 H

] [
ξ1

ξ2 +  H−1yξ1 
] = [

−d1 +  yTH−1d2

d2
]                     (13) 

 

with S =  yTH−1y > 0 ( H =  H−T>0 ). Because s is positive and H positive definite the overall matrix is 

positive definite. This form is very suitable because different kinds of iterative methods can be applied to 

problems involving positive definite matrices. This leads to the LS-SVM classifier with conjugate gradient 

algorithm LS-SVM for big data is as follows. 

 

1.  Solve η,  ν from Hη = Y and  Hν = 1v 

2.  Compute s = Y
T
 η 

3.  Find solution  

b = η
T
1v/s 

α = ν - ηb 

 
4. Experiment 

To evaluate the performance of accuracy on eiegnspace update for incremental data, we take 1300 data 

and each data has 18 variables. Detailed variables attributes are shown in Table 1. Among data, the number 

of normal is 800 and rest of them is abnormal. Data were collected and recorded at one second intervals 

during the etch for each of these sensors. Since our primary concern in this work was to detect faults 

occurring from one wafer to the next, we took the average value of each variable during the etch process for 

each wafer, resulting in a 1x18 array of values for each wafer. 

 

Table 1. Tool-state variables used for process monitoring  

1 TCP Top Power 10 RF Impedance 

2 TCP Tune 11 RF Power 

3 TCP Load 12 TCP Reflected Power 

4 TCP Phase Error 13 RF Bottom Reflected Power 

5 TCP Impedance 14 Pressure 

6 RF Bottom Power 15 BCI3 Flow 

7 RF Tune 16 CI2 Flow 

8 RF Load 17 He Pressure 

9 RF Phase Error 18 Vat Value 
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4.1  Comparison with SVM 

Recently SVM has been a powerful methodology for solving problems in nonlinear classification. To 

evaluate the classification accuracy of the proposed system it is desirable to compare with SVM. Generally a 

disadvantage of the incremental method is its accuracy compared to the batch method even though it has the 

advantage of memory efficiency. According to Table 2 and Table 3 we can see that the proposed method has 

better classification performance compared to batch SVM. Through this result we can show that the proposed 

classifier has remarkable classification accuracy, although it is worked in an incremental way. 

 

Table 2. Performance comparison of proposed method and SVM using all features 

 
Training Generalization Eigenvalue update criterion 

Standard SVM 100% 95.34% none 

Proposed method 100% 96.74%  7.0'
 

 

Table 3. Performance comparison of proposed method and SVM using extracted features 

 
Training Generalization Eigenvalue update criterion 

Standard SVM 100% 95.02% none 

Proposed method 100% 97.03%  7.0'
 

 

5. Conclusion and Remarks 

A conjugate based LS-SVM which combining empirical kernel map was presented for dealing with fault 

detection in semiconductor manufacturing process. Such classifier has following advantages. Proposed 

detection system is more efficient in memory requirement than batch LS-SVM. In batch LS-SVM the (N+1) 

× (N+1) matrix has to be stored, while for our proposed method does not. It is very useful when dealing with 

large size data. Experimental results on wafer data, proposed method shows lead to good performance. By 

this result we will make a commercial wafer fault detection system with Jade Solution Company. 
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