• 제목/요약/키워드: In-process Detection

검색결과 3,508건 처리시간 0.031초

절삭력을 이용한 채터의 감지에 관한 연구 (A Study on the Detection of Chatter Vibration using Cutting Force Measurement)

  • 윤재웅
    • 한국생산제조학회지
    • /
    • 제9권3호
    • /
    • pp.150-159
    • /
    • 2000
  • In-process diagnosis of the cutting state is essential for the automation of manufacturing systems. Especially when the cutting process becomes unstable it induces self-exited vibrations a frequent case of poor tool life rough surface finish damage to the workpiece and the machine tool itself and excessive down time. To ensure that the cutting process main-tains stable it is highly desirable to have the capability of real-time. To ensure that the cutting process main-tains stable it is highly desirable to have the capability of real-time monitoring and controlling chatter. This paper describes the detection method of chatter vibration using cutting force in turning process. In order to detect a chatter vibra-tion the dynamic fluctuation of radial force is analyzed since this components is sensitive to the chatter. The envelope sig-nal of radial force has been calculated by the use of FIR Hilbert transformer and it was useful to classify the chatter signal from the dynamically unstable circumstances. It was found that the mode and the mode width were closely correlated with the chatter amplitude was well. Finally back propagation(BP) neural network have been applied to the pattern recognition for the classification of chatter signal in various cutting conditions. The validity of this systed was confirmed by the experiments under the various cutting conditions.

  • PDF

A Stochastic Differential Equation Model for Software Reliability Assessment and Its Goodness-of-Fit

  • Shigeru Yamada;Akio Nishigaki;Kim, Mitsuhiro ura
    • International Journal of Reliability and Applications
    • /
    • 제4권1호
    • /
    • pp.1-12
    • /
    • 2003
  • Many software reliability growth models (SRGM's) based on a nonhomogeneous Poisson process (NHPP) have been proposed by many researchers. Most of the SRGM's which have been proposed up to the present treat the event of software fault-detection in the testing and operational phases as a counting process. However, if the size of the software system is large, the number of software faults detected during the testing phase becomes large, and the change of the number of faults which are detected and removed through debugging activities becomes sufficiently small compared with the initial fault content at the beginning of the testing phase. Therefore, in such a situation, we can model the software fault-detection process as a stochastic process with a continuous state space. In this paper, we propose a new software reliability growth model describing the fault-detection process by applying a mathematical technique of stochastic differential equations of an Ito type. We also compare our model with the existing SRGM's in terms of goodness-of-fit for actual data sets.

  • PDF

미약한 시각 특징과 Haar 유사 특징들의 강화 연결에 의한 도로 상의 실 시간 차량 검출 (Real Time On-Road Vehicle Detection with Low-Level Visual Features and Boosted Cascade of Haar-Like Features)

  • 샴 아디카리;유현중;김형석
    • 제어로봇시스템학회논문지
    • /
    • 제17권1호
    • /
    • pp.17-21
    • /
    • 2011
  • This paper presents a real- time detection of on-road succeeding vehicles based on low level edge features and a boosted cascade of Haar-like features. At first, the candidate vehicle location in an image is found by low level horizontal edge and symmetry characteristic of vehicle. Then a boosted cascade of the Haar-like features is applied to the initial hypothesized vehicle location to extract the refined vehicle location. The initial hypothesis generation using simple edge features speeds up the whole detection process and the application of a trained cascade on the hypothesized location increases the accuracy of the detection process. Experimental results on real world road scenario with processing speed of up to 27 frames per second for $720{\times}480$ pixel images are presented.

소형 제품에 있어 조립 생산성 향상을 위한 취약 공정 평가 시스템 (Evaluation System of Weak Process for Assemblability in Small-sized Product)

  • 목학수;황건용;조종래
    • 한국정밀공학회지
    • /
    • 제15권6호
    • /
    • pp.64-78
    • /
    • 1998
  • In this paper, on the basis of factory rationalization, the detection and evaluation system of weak assembly process was developed to analyze the processes for improvement of assembly productivity in the current assembly system. Using this detection and evaluation system of weak assembly process, the weak degrees of assembly process were quantitatively calculated. In this system, the improved design rules were constructed for assemblability and the redesign alternative was Presented for elimination of weak Process. After review of the redesign alternative, it was applied to the actual assembly system.

  • PDF

무인 항공기를 이용한 밀집영역 자동차 탐지 (Vehicle Detection in Dense Area Using UAV Aerial Images)

  • 서창진
    • 한국산학기술학회논문지
    • /
    • 제19권3호
    • /
    • pp.693-698
    • /
    • 2018
  • 본 논문은 최근 물체탐지 분야에서 실시간 물체 탐지 알고리즘으로 주목을 받고 있는 YOLOv2(You Only Look Once) 알고리즘을 이용하여 밀집 영역에 주차되어 있는 자동차 탐지 방법을 제안한다. YOLO의 컨볼루션 네트워크는 전체 이미지에서 한 번의 평가를 통해서 직접적으로 경계박스들을 예측하고 각 클래스의 확률을 계산하고 물체 탐지 과정이 단일 네트워크이기 때문에 탐지 성능이 최적화 되며 빠르다는 장점을 가지고 있다. 기존의 슬라이딩 윈도우 접근법과 R-CNN 계열의 탐지 방법은 region proposal 방법을 사용하여 이미지 안에 가능성이 많은 경계박스를 생성하고 각 요소들을 따로 학습하기 때문에 최적화 및 실시간 적용에 어려움을 가지고 있다. 제안하는 연구는 YOLOv2 알고리즘을 적용하여 기존의 알고리즘이 가지고 있는 물체 탐지의 실시간 처리 문제점을 해결하여 실시간으로 지상에 있는 자동차를 탐지하는 방법을 제안한다. 제안하는 연구 방법의 실험을 위하여 오픈소스로 제공되는 Darknet을 사용하였으며 GTX-1080ti 4개를 탑재한 Deep learning 서버를 이용하여 실험하였다. 실험결과 YOLO를 활용한 자동차 탐지 방법은 기존의 알고리즘 보다 물체탐지에 대한 오버헤드를 감소 할 수 있었으며 실시간으로 지상에 존재하는 자동차를 탐지할 수 있었다.

YOLOv5를 이용한 객체 이중 탐지 방법 (Object Double Detection Method using YOLOv5)

  • 도건우;김민영;장시웅
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.54-57
    • /
    • 2022
  • 대한민국은 산불의 위험으로부터 취약한 환경을 가지고 있으며, 이로 인해 매년 큰 피해가 발생하고 있다. 이를 예방하기 위해 많은 인력을 활용하고 있으나 효과가 미흡한 실정이다. 만약 인공지능 기술을 통해 산불을 조기 발견해 진화된다면 재산 및 인명피해를 막을 수 있다. 본 논문에서는 산불의 피해를 최소화하기 위한 오브젝트 디텍션 모델을 제작하는 과정에서 발생하는 데이터 수집과 가공 과정을 최소화하는 목표로 한 객체 이중 탐지 방법을 연구했다. YOLOv5에서 한정된 이미지를 학습한 단일 모델을 통해 일차적으로 원본 이미지를 탐지하고, 원본 이미지에서 탐지된 객체를 Crop을 통해 잘라낸다. 이렇게 잘린 이미지를 재탐지하는 객체 이중 탐지 방법을 통해 오 탐지 객체 탐지율의 개선 가능성을 확인했다.

  • PDF

동영상에서 실시간 얼굴검출에 관한 연구 (A Study on Real-time Face Detection in Video)

  • 김형균;배용근
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권2호
    • /
    • pp.47-53
    • /
    • 2010
  • 본 논문은 동영상에서 실시간 얼굴검출을 위하여 Residual Image 검출과 색상정보를 이용한 얼굴검출 기법을 제안하였다. 제안된 기법은 동영상에서 빠른 처리 속도와 높은 얼굴 검출율을 나타냈으며 기울어진 얼굴영상에 대한 보정작업을 통하여 검출 에러율을 줄였다. 실시간으로 전송된 동영상에서 검출의 대상이 되는 정지영상을 추출한다. 추출된 영상은 기울어진 얼굴검출을 위한 window회전 알고리즘을 사용하고 이렇게 보정된 영상은 얼굴 검출에 필요한 특징을 추출하기 위해 AdaBoost알고리즘을 사용하여 실시간으로 얼굴이 검출된 영상을 획득하게 된다.

허프변환과 차선모델을 이용한 효과적인 차선검출에 관한 연구 (Study on Effective Lane Detection Using Hough Transform and Lane Model)

  • 김기석;이진욱;조재수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.34-36
    • /
    • 2009
  • This paper proposes an effective lane detection algorithm using hugh transform and lane model. The proposed lane detection algorithm includes two major components, i.e., lane marks segmentation and an exact lane extraction using a novel postprocessing technique. The first step is to segment lane marks from background images using HSV color model. Then, a novel postprocessing is used to detect an exact lane using Hugh transform and lane models(linear and curved lane models). The postprocessing consists of three parts, i.e, thinning process, Hugh Transform and filtering process. We divide input image into three regions of interests(ROIs). Based on lane curve function(LCF), we can detect an exact lane from various extracted lane lines. The lane models(linear and curved lane mode]) are used in order to judge whether each lane segment is fit or not in each ROIs. Experimental results show that the proposed scheme is very effective in lane detection.

  • PDF

S-분포형 결함 발생률을 고려한 NHPP 소프트웨어 신뢰성 모형에 관한 비교 연구 (The Comparative Software Reliability Model of Fault Detection Rate Based on S-shaped Model)

  • 김희철;김경수
    • 융합보안논문지
    • /
    • 제13권1호
    • /
    • pp.3-10
    • /
    • 2013
  • 본 연구에서는 소프트웨어 제품 테스팅 과정에서 관측고장시간에 근거한 결함 발생률을 고려한 소프트웨어 신뢰성 모형에 대하여 연구 하였다. 신뢰성 분야에서 많이 사용되는 S-분포모형을 이용한 새로운 결함 확률을 추가한 문제를 제시하였다. 수명분포는 유한고장 비동질적인 포아송과정을 이용하였다 본 논문의 결함 발생률을 고려한 소프트웨어 고장 자료 분석에서는 고장 시간 자료를 적용하였으며 모수추정 방법은 최우추정법을 이용하여 결함 발생 확률에 대한 관계와 신뢰도를 추정 하였다.

Robust Multiuser Detection Based on Least p-Norm State Space Filtering Model

  • Zha, Daifeng
    • Journal of Communications and Networks
    • /
    • 제9권2호
    • /
    • pp.185-191
    • /
    • 2007
  • Alpha stable distribution is better for modeling impulsive noises than Gaussian distribution in signal processing. This class of process has no closed form of probability density function and finite second order moments. In general, Wiener filter theory is not meaningful in S$\alpha$SG environments because the expectations may be unbounded. We proposed a new adaptive recursive least p-norm Kalman filtering algorithm based on least p-norm of innovation process with infinite variances, and a new robust multiuser detection method based on least p-norm Kalman filtering. The simulation experiments show that the proposed new algorithm is more robust than the conventional Kalman filtering multiuser detection algorithm.