• Title/Summary/Keyword: In-pile Data

Search Result 314, Processing Time 0.027 seconds

Thermal Conductivity Estimation of Soils Using Coil Shaped Ground Heat Exchanger (코일형 지중열교환기를 이용한 지반의 열전도도 산정)

  • Yoon, Seok;Lee, Seung-Rae;Park, Hyunku;Park, Skhan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.177-183
    • /
    • 2012
  • The use of energy pile foundation has been increased for economic utilization of geothermal energy. In particular, a coil-shaped ground heat exchanger (GHE) is preferred than conventional U-shaped heat exchanger to ensure better efficiency of heat exchange rate. This paper presents experimental results by changing different pitch spaces of spiral coils. Joomunjin sand was filled in a steel box of which the size was $5m{\times}1m{\times}1m$. Thermal response tests (TRTs) were conducted to measure the ground thermal conductivity with temperatures of circulating water using line source model and ring coil model. Experimental results and analytical solutions were compared to validate the applicability of these models. Ring coil model showed more accurate similar results with experimental data rather than line source model and cylindrical source model.

Soil Depth Information DB Construction Methods for Liquefaction Assessment (액상화 평가를 위한 지층심도DB 구축 방안)

  • Gang, ByeongJu;Hwang, Bumsik;Kim, Hansam;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.39-46
    • /
    • 2019
  • The liquefaction is a phenomenon that the effective stress becomes zero due to the rapidly accumulated excess pore water pressure when a strong load acts on the ground for a short period of time, such as an earthquake or pile driving, resulting in the loss of the shear strength of the ground. Since the Geongju and Pohang earthquake, liquefaction brought increasing domestic attention. This liquefaction can be assessed mainly through the semi-empirical procedures proposed by Seed and Idriss (1982) and the liquefaction risk based on the penetration resistance obtained from borehole DB and SPT. However, the geotechnical information data obtained by the in-situ tests or boring information fundamentally have an issue of the representative of the target area. Therefore, this study sought to construct a ground information database by classifying and reviewing the ground information required for liquefaction assessment, and tried to solve the representative problem of the soil layer that is subject to liquefaction evaluation by performing spatial interpolation using GIS.

Implementation of an Earthquake Alarming System Based on Acceleration Monitoring at Coastal LNG Receiving Terminals (해안 천연가스 인수기지에 대한 가속도 계측 기반의 지진경보 시스템 구축)

  • Sun, Chang-Guk;Jung, Byung-Sun;Kim, Joon-Ho;Hong, Seong-Kyeon;Kim, Ki-Seog
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.339-348
    • /
    • 2010
  • As part of preparing for future earthquakes near three LNG receiving terminals located in coastal regions of Korea, acceleration monitoring systems were installed at four free field sites and on a pile foundation beneath a storage tank in a receiving terminal. Several equipments and accessories were devised to successfully install and operate the monitoring system at LNG receiving terminals. Synthetic earthquake-alarming software systems designed for decisionmaking, based on peak ground acceleration computed using the measured data, were developed for rapid response during earthquakes, not only in each local terminal area but also in the central control division. In addition, a framework software linking nationwide data on peak ground accelerations was included in the integrated earthquake alarming system in the central division, for various future applications. The earthquake alarming systems developed in this research for LNG receiving terminals, based on acceleration monitoring, represent a useful framework for industrial facilities located in coastal regions, where geotechnical conditions may show marked spatial variations.

Aging Deterioration for Electric Power Transmission Tower on Offshore Through Periodic Inspections (해상송전철탑 구조물의 주기점검을 통한 경년열화 변화특성)

  • Lee, Ho Beom;Jang, Il Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.25-33
    • /
    • 2012
  • In electric power transmission tower structures on offshore, implementation of life management using the event data of regular safety inspections for structural and material damages is strongly recommended. In this study, six tower structures in Sihwa Lake around Yeoungheung island were target bodies for the safety inspections. safety inspections for deterioration about each of six towers were performed about three items for steel member, five items for concrete foundation, and four items for steel-pipe pile in seawater and seawater itself. Safety inspections for steel members included the visual observations of surface appearances, the measurements of member thicknesses, and the checks of painting states. Also safety inspections for concrete foundations comprised the estimation of crack features, the evaluation of non-destructive compression strengths, and the measurements of neutralization depths and chlorides contents. For steel-pipe piles in seawater the inspections comprised the surveys of corrosion states in accordance with potential levels tests and anode tests, the analyses of photos taken on surfaces of the piles as well as the evaluation of seawater quality. A set of deterioration inspections was performed at the same positions around october of each year for three consecutive years. As a result in this study, Newly developed deterioration indexes have been applied profitably to maintain structural safety for electric power transmission towers by utilizing these event data systematically.

Side Shear Resistance of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 주면지지력)

  • Kwon, Oh Sung;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.205-212
    • /
    • 2008
  • In this research, the effect of rock mass weathering on the side shear resistance of drilled shaft socketed into igneous-metamorphic rock was investigated. For that, 23 cast-in-place concrete piles with diameters varying from 400mm to 1,500mm were constructed at four different sites, and the static axial load tests were performed to examine the resistant behavior of the piles. A comprehensive field/laboratory testing program at the field test site was also performed to describe the in situ rock mass conditions quantitatively. The side shear resistance of rock socketed piles was found to have no intimate correlation with the compressive strength of the intact rock. However, the global rock mass strength, which was calculated by the Hoek and Brown criteria, was found to closely correlate to the side shear resistance. The ground investigation data regarding the rock mass conditions (e.g. $E_m$, $E_{ur}$, $p_{lm}$, RMR, RQD, j) were also found to be highly correlated with the side shear resistance, showing the coefficients of correlation greater than 0.75 in most cases. Additionally, the applicability of existing methods for the side shear resistance of weathered granite-gneiss was verified by comparison with the field test data. The existing methods which consider the effect of rock mass condition were modified and/or extended for weathered rock mass where mass factor j is lower than 0.15, and RQD is below 50%.

Uplift Capacity of Wood Pile for Greenhouse Foundation (온실 기초용 나무말뚝의 인발저항력 검토)

  • Yun, Sung Wook;Choi, Man Kwon;Lee, Si Young;Yu, Chan;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.123-127
    • /
    • 2015
  • Wood piles are rarely used in the construction of a greenhouse in Korea, but they are relatively more often used in other countries, such as the Netherlands. There are several advantages associated with wood piles: they are more cost-effective, less time-consuming, and more ecofriendly than the steel pipes (SPs) and pre-stressed highstrength (PHC) piles. However, one of the limiting conditions is that they have to be installed below the groundwater level to prevent decay. Since the groundwater levels are generally high in the reclaimed lands in Korea, wood piles are expected to be used often as reinforcements for foundations of greenhouses in these areas. In this study, we measured the uplift capacities of wood piles through in-situ uplift capacity tests with an aim to provide basic design data for wood pile foundations. In order to test their applicability, we then compared these experimentally measured ultimate uplift capacities with the ones calculated through some of the existing theoretical equations. The wood piles used in the loading tests were made of softwood (pine wood), and the tests were performed using piles with different diameters (∅25cm and ∅30cm) and embedded depths (1m, 3m, and 5m). The test results revealed that the uplift capacity of the wood piles showed a clear linearly increasing tendency in proportion to the embedded depth, with the ultimate uplift capacities for the diameters 25cm and 30cm being 9.38 and 10.56tf, respectively, at the embedded depth of 5m; thus demonstrating uplift capacities of ${\geq}9tf$. The comparison between the actually measured values of the uplift capacity and the ones calculated through equations revealed that the latter, which were obtained using the ${\alpha}$ method, were generally in an approximate agreement with the in-situ measured values.

A Study on Termite Monitoring Method Using Magnetic Sensors and IoT(Internet of Things) (자력센서와 IoT(사물인터넷)를 활용한 흰개미 모니터링 방법 연구)

  • Go, Hyeongsun;Choe, Byunghak
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.1
    • /
    • pp.206-219
    • /
    • 2021
  • The warming of the climate is increasing the damage caused by termites to wooden buildings, cultural properties and houses. A group removal system can be installed around the building to detect and remove termite damage; however, if the site is not visited regularly, every one to two months, you cannot observe whether termites have spread within, and it is difficult to take prompt effective action. In addition, since the system is installed and operated in an exposed state for a long period of time, it may be ineffective or damaged, resulting in a loss of function. Furthermore if the system is installed near a cultural site, it may affect the aesthetic environment of the site. In this study, we created a detection system that uses wood, cellulose, magnets, and magnetic sensors to determine whether termites have entered the area. The data was then transferred to a low power LoRa Network which displayed the results without the necessity of visiting the site. The wood was made in the shape of a pile, and holes were made from the top to the bottom to make it easier for termites to enter and produce a cellulose sample. The cellulose sample was made in a cylindrical shape with a magnet wrapped in cellulose and inserted into the top of a hole in the wood. Then, the upper part of the wood pile was covered with a stopper to prevent foreign matter from entering. It also served to block external factors such as light and rainfall, and to create an environment where termites could add cellulose samples. When the cellulose was added by the termites, a space was created around the magnet, causing the magnet to either fall or tilt. The magnetic sensor inside the stopper was fixed on the top of the cellulose sample and measured the change in the distance between the magnet and the sensor according to the movement of the magnet. In outdoor experiments, 11 cellulose samples were inserted into the wood detection system and the termite inflow was confirmed through the movement of the magnet without visiting the site within 5 to 17 days. When making further improvements to the function and operation of the system it in the future, it is possible to confirm that termites have invaded without visiting the site. Then it is also possible to reduce damage and fruiting due to product exposure, and which would improve the condition and appearance of cultural properties.

Verticality 3D Monitoring System for the Large Circular Steel Pipe (대형 원형강관 수직도 모니터링을 위한 3D 모니터링 시스템)

  • Koo, Sungmin;Park, Haeyoung;Oh, Myounghak;Baek, Seungjae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.870-877
    • /
    • 2020
  • A suction bucket foundation, especially useful at depths of more than 20m, is a method of construction. The method first places an empty upturned bucket at the target site. Then, the bucket is installed by sucking water or air into it to create negative pressure. For stability, it is crucial to secure the verticality of the bucket. However, inclination by the bucket may occur due to sea-bottom conditions. In general, a repeated intrusion-pulling method is used for securing verticality. However, it takes a long time to complete the job. In this paper, we propose a real-time suction bucket verticality monitoring system. Specifically, the system consists of a sensor unit that collects raw verticality data, a controller that processes the data and wirelessly transmits the information, and a display unit that shows verticality information of a circular steel pipe. The system is implemented using an inclination sensor and an embedded controller. Experimental results show that the proposed system can efficiently measure roll/pitch information with a 0.028% margin of error. Furthermore, we show that the system properly operates in a suction bucket-based model experiment.

Determination of Resistance Factors of Load and Resistance Factor Design for Drilled Shaft Based on Load Test (LRFD 설계를 위한 현장타설말뚝의 주면지지력 저항계수 산정)

  • Kim, Seok-Jung;Kwon, Oh-Sung;Jung, Sung-Jun;Han, Jin-Tae;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.17-24
    • /
    • 2010
  • Load Resistance Factor Design method is used increasingly in geotechnical design world widely and resistance factors for drilled shafts are suggested by AASHTO. However, these resistance factors are determined for intact rock conditions; by comparison, most of bedrocks in Korea have weathered condition, so that applying the AASHTO resistance factors is not reasonable. Thus, this study suggests the proper resistance factors for design of drilled shaft in Korea. The 22 cases of pile load test data from 8 sites were chosen and reliability-based approach is used to analyze the data. Reliability analysis was performed by First Order Second Moment Method (FOSM) applying 4 bearing capacity equations. As a result, when the Factor of Safety (FOS) was selected as 3.0, the target reliability indexes (${\beta}_c$) were evaluated as 2.01~2.30. Resistance factors and load factors are determined from optimization based on above results. The resistance factors ranged between 0.48 and 0.56 and load factors for dead load and live load are evaluated as approximately 1.25 and 1.75 respectively. However, when the target reliabilities are considered as 3.0, the resistance factors are evaluated as approximately 50% of the results when the target reliability index was 2.0.

Case studies of shallow marine investigations in Australia with advanced underwater seismic refraction (USR) (최신 수중 탄성파 굴절법(USR)을 이용한 호주의 천부해양탐사 사례연구)

  • Whiteley, Robert J.;Stewart, Simon B.
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.34-40
    • /
    • 2008
  • Underwater seismic refraction with advanced interpretation approaches makes important contributions to shallow marine exploration and geotechnical investigations in Australia's coastal areas. A series of case studies are presented to demonstrate the recent applications of continuous and static USR methods to river crossing and port infrastructure projects at various sites around Australia. In Sydney, static underwater seismic refraction (USR) with bottom-placed receivers and borehole seismic imaging assisted the development of improved geotechnical models that reduced construction risk for a tunnel crossing of the Lane Cove River. In Melbourne, combining conventional boomer reflection and continuous USR with near-bottom sources and receivers improved the definition of a buried, variably weathered basalt flow and assisted dredging assessment for navigation channel upgrades at Geelong Ports. Sand quality assessment with continuous USR and widely spaced borehole information assisted commercial decisions on available sand resources for the reclamation phase of development at the Port of Brisbane. Buried reefs and indurated layers occur in Australian coastal sediments with the characteristics of laterally limited, high velocity, cap layers within lower velocity materials. If these features are not recognised then significant error in depth determination to deeper refractors can occur. Application of advanced refraction inversion using wavefront eikonal tomography to continuous USR data obtained along the route of a proposed offshore pipeline near Fremantle allowed these layers and the underlying bedrock refractor to be accurately imaged. Static USR and the same interpretation approach was used to image the drowned granitic regolith beneath sediments and indurated layers in the northern area of Western Australia at a proposed new berthing site where deep piling was required. This allowed preferred piling sites to be identified, reducing overall pile lengths. USR can be expected to find increased application to shallow marine exploration and geotechnical investigations in Australia's coastal areas as economic growth continues and improved interpretation methods are developed.