DOI QR코드

DOI QR Code

Soil Depth Information DB Construction Methods for Liquefaction Assessment

액상화 평가를 위한 지층심도DB 구축 방안

  • Gang, ByeongJu (Department of Civil & Environmental Engineering, Dankook University) ;
  • Hwang, Bumsik (Department of Civil & Environmental Engineering, Dankook University) ;
  • Kim, Hansam (Earthquake Reasearch Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Cho, Wanjei (Department of Civil & Environmental Engineering, Dankook University)
  • Received : 2019.01.05
  • Accepted : 2019.01.24
  • Published : 2019.03.01

Abstract

The liquefaction is a phenomenon that the effective stress becomes zero due to the rapidly accumulated excess pore water pressure when a strong load acts on the ground for a short period of time, such as an earthquake or pile driving, resulting in the loss of the shear strength of the ground. Since the Geongju and Pohang earthquake, liquefaction brought increasing domestic attention. This liquefaction can be assessed mainly through the semi-empirical procedures proposed by Seed and Idriss (1982) and the liquefaction risk based on the penetration resistance obtained from borehole DB and SPT. However, the geotechnical information data obtained by the in-situ tests or boring information fundamentally have an issue of the representative of the target area. Therefore, this study sought to construct a ground information database by classifying and reviewing the ground information required for liquefaction assessment, and tried to solve the representative problem of the soil layer that is subject to liquefaction evaluation by performing spatial interpolation using GIS.

액상화란 느슨한 사질토 지반에서 지진과 같은 큰 진동하중이 발생하여 과잉간극수압이 급격히 증가해 전단강도를 상실하는 현상으로 국내 포항에서 발생한 액상화 현상과 더불어 그 관심이 증가하고 있는 추세이다. 이러한 액상화 평가는 주로 Seed and Idriss(1982)가 제시한 반경험적 방법을 통해 수행할 수 있으며 시추공 DB와 SPT에서 얻어진 관입저항력을 기초로 액상화 위험을 평가할 수 있지만 획득된 시추공 DB는 일정 구역을 대표하지 못하는 문제를 내재하고 있다. 따라서 본 연구는 액상화 평가의 필요한 지반정보를 분류 및 검토하여 지반정보의 DB구축방안을 모색하고 지리정보시스템(GIS)을 활용하여 공간보간을 수행해 액상화 평가 대상이 되는 지층의 대표성 문제를 해소하고자 하였다. 액상화 발생이 예상되는 지층의 두께를 정의하는 방안에 따라 세 가지 지층심도DB구축 방안을 제시하였고 교차검증을 통해 제시한 구축방안의 정밀도를 비교, 분석하여 액상화 평가에 적합한 지층심도DB구축 방안을 제시하였다.

Keywords

HJHGC7_2019_v20n3_39_f0001.png 이미지

Fig. 1. Boreholes location in Incheon’s harbor (Area 1)

HJHGC7_2019_v20n3_39_f0002.png 이미지

Fig. 2. Boreholes location in reclamed land of Songdo (Area 2)

HJHGC7_2019_v20n3_39_f0003.png 이미지

Fig. 3. Boreholes location in Saemangeum (Area 3)

HJHGC7_2019_v20n3_39_f0005.png 이미지

Fig. 5. Correlation between measured value and predicted value in Area 1

HJHGC7_2019_v20n3_39_f0006.png 이미지

Fig. 6. Correlation between measured value and predicted value in Area 2

HJHGC7_2019_v20n3_39_f0007.png 이미지

Fig. 7. Correlation between measured value and predicted value in Area 3

HJHGC7_2019_v20n3_39_f0008.png 이미지

Fig. 8. Average of RMSE with regard to interpolation method in Area 1,2 and 3

HJHGC7_2019_v20n3_39_f0009.png 이미지

Fig. 4. Results of spatial interpolation in Target areas areas

Table 1. Cases where the liquefaction assessment can be skipped under current design provision

HJHGC7_2019_v20n3_39_t0001.png 이미지

Table 2. Geotechnical information required for the liquefaction assessment

HJHGC7_2019_v20n3_39_t0002.png 이미지

Table 3. Summary of soil properties for simplified procedure

HJHGC7_2019_v20n3_39_t0003.png 이미지

Table 4. Summary of target area

HJHGC7_2019_v20n3_39_t0004.png 이미지

Table 5. Summary of RMSE

HJHGC7_2019_v20n3_39_t0005.png 이미지

References

  1. Gang, B. J., Hwang, B., S., Park, H. W. and Cho, W. J. (2018), Optimal input database construction for 3D dredging quantification, Journal of the Korean Geo-Environmental Society, Vol 19, No 5, pp. 23-31 (In Korean).
  2. Kim, D. H., Ryu, D. W., Lee, J. H., Choi, I. G., Kim, J. K. and Lee, W. J. (2010), Comparative Studies of Kriging Methods for Estimation of Geo-Layer Distribution of Songdo international City in Incheon, Journal of the Korean Geotechnical Society, Vol. 26, No. 5, pp. 57-64 (In Korean).
  3. Ministry of Land (2008), Transport and Maritime Affairs, "Korean Highway Bridge Design Code", Korea Road and Transportation Association (In Korean).
  4. Ministry of Land, Infrastructure and Transport (MLIT) (2017), Urban railway seismic design criteria, pp. 29-40 (In Korean).
  5. Seed, H. B. and Idriss, I. M. (1982), Ground motions and soil liquefaction during earthquakes, Earthquake Engineering Research Institute, Oakland, CA.
  6. Sitharam, T. G., GovindarRaju, L. and Murthy, B. R. S. (2004), Evaluation of liquefaction potential and dynamic properties of silty sand using cyclic triaxial testing, Geotechnical Testing Journal, Vol. 27, No. 5, pp. 423-429.
  7. Seo, M. W., Sun, C. G. and Oh, M. H. (2009), LPI-based Assessment of liquefaction potential on the west coastal region of Korea, Journal of the Earthquake Engineering Society of Korea, Vol. 13, No. 4, pp. 1-13 (In Korean). https://doi.org/10.5000/EESK.2009.13.4.001
  8. Seo, M. W., Scott, M. O., Sun, C. G. and Oh, M. H. (2012), Evaluation of liquefaction potential index along western coast of South Korea using SPT and CPT, Marine Georesources and Geotechnology, Vol. 30, No. 3, pp. 234-260. https://doi.org/10.1080/1064119X.2011.614322
  9. Saeed-ullah, J. M., Park, D. H., Kim, H. S. and Park, K. C. (2016), Cyclic simple shear test based design liquefaction resistance curve of granular soil, Journal of the Korean Geotechnical Society, Vol. 32, No. 6, pp. 49-59 (In Korean). https://doi.org/10.7843/KGS.2016.32.6.49
  10. Song, Y. W., Chung, C. K., Park, K. H. and Kim, M. G. (2018), Assessment of liquefaction potential using correlation between shear wave velocity and normalized LPI on urban areas of Seoul and Gyeongju, Journal of the Korean Society of Civil Engineers, Vol. 38, No. 2, pp. 357-367. https://doi.org/10.12652/KSCE.2018.38.2.0357
  11. Park, S. S. and Kim, Y. S. (2013), Liquefaction resistance of sands containing plastic fines with different plasticity, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No. 5, pp. 825-830. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000806