• Title/Summary/Keyword: In-Flight Simulation

Search Result 805, Processing Time 0.026 seconds

Development of SILS platform for application system based on AR and UAV (증강현실과 UAV 기반 응용 시스템을 위한 SILS 플랫폼 개발)

  • Cho, Wan Joo;Kang, Moon Hye;Moon, Yong Ho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.19-31
    • /
    • 2021
  • Recently, the development of UAV application system using augmented reality (AR) has received much attention. In general, the design and implementation of UAV application system are verified with SILS techniques before actual flight experiments. However, existing SILS environment cannot be used to verify the application system based on AR and UAV because it does not include key features related to AR. To overcome this problem, we proposed an SILS platform that could be effectively used for the development of application systems based on AR and UAV. Simulation results on accuracy, efficiency, and scalability show that the proposed platform could be effectively utilized for the development of AR and UAV based-application systems.

A Study on Automatic Precision Landing for Small UAV's Industrial Application (소형 UAV의 산업 응용을 위한 자동 정밀 착륙에 관한 연구)

  • Kim, Jong-Woo;Ha, Seok-Wun;Moon, Yong-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.3
    • /
    • pp.27-36
    • /
    • 2017
  • In almost industries, such as the logistics industry, marine fisheries, agriculture, industry, and services, small unmanned aerial vehicles are used for aerial photographing or closing flight in areas where human access is difficult or CCTV is not installed. Also, based on the information of small unmanned aerial photographing, application research is actively carried out to efficiently perform surveillance, control, or management. In order to carry out tasks in a mission-based manner in which the set tasks are assigned and the tasks are automatically performed, the small unmanned aerial vehicles must not only fly steadily but also be able to charge the energy periodically, In addition, the unmanned aircraft need to land automatically and precisely at certain points after the end of the mission. In order to accomplish this, an automatic precision landing method that leads landing by continuously detecting and recognizing a marker located at a landing point from a video shot of a small UAV is required. In this paper, it is shown that accurate and stable automatic landing is possible even if simple template matching technique is applied without using various recognition methods that require high specification in using low cost general purpose small unmanned aerial vehicle. Through simulation and actual experiments, the results show that the proposed method will be made good use of industrial fields.

Design and Development of VDL Mode-2 D8PSK Modem (VDL Mode-2 D8PSK 모뎀 설계 및 개발)

  • Gim, Jong-Man;Choi, Seoung-Duk;Eun, Chang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11C
    • /
    • pp.1085-1097
    • /
    • 2009
  • We present a structure and design method of the D8PSK modem compatible with the VDL mode-2 standard and performance test results of the developed modem. In VDL mode-2, the raised cosine filter is used only in the transmitter and a general low pass filter is used in the receiver. Consequently, we can not achieve ISI reduction but can have better spectrum characteristics. Although there is 1~2 dB performance degradation with an un-matched filter compared to that with a matched filter, it is more important to minimize adjacent channel interference in narrow band communications. The transmit signal is generated digitally to avoid the problems(I/Q imbalance and DC offset etc.) of analog modulators. In addition the digital down converter using digital IF sampling technique is adopted for the receiver. This paper contains the overall configuration, design method and simulation results based in part on the previously proposed structures and algorithms. It is confirmed that the modem transmits and receives messages successfully at a speed of max. 870 km/h over ranges of up to 310 km through the ground and in-flight communication tests.

Obtaining Informed Consent Using Patient Specific 3D Printing Cerebral Aneurysm Model

  • Kim, Pil Soo;Choi, Chang Hwa;Han, In Ho;Lee, Jung Hwan;Choi, Hyuk Jin;Lee, Jae Il
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.4
    • /
    • pp.398-404
    • /
    • 2019
  • Objective : Recently, three-dimensional (3D) printed models of the intracranial vascular have served as useful tools in simulation and training for cerebral aneurysm clipping surgery. Precise and realistic 3D printed aneurysm models may improve patients' understanding of the 3D cerebral aneurysm structure. Therefore, we created patient-specific 3D printed aneurysm models as an educational and clinical tool for patients undergoing aneurysm clipping surgery. Herein, we describe how these 3D models can be created and the effects of applying them for patient education purpose. Methods : Twenty patients with unruptured intracranial aneurysm were randomly divided into two groups. We explained and received informed consent from patients in whom 3D printed models-(group I) or computed tomography angiography-(group II) was used to explain aneurysm clipping surgery. The 3D printed intracranial aneurysm models were created based on time-of-flight magnetic resonance angiography using a 3D printer with acrylonitrile-butadiene-styrene resin as the model material. After describing the model to the patients, they completed a questionnaire about their understanding and satisfaction with aneurysm clipping surgery. Results : The 3D printed models were successfully made, and they precisely replicated the actual intracranial aneurysm structure of the corresponding patients. The use of the 3D model was associated with a higher understanding and satisfaction of preoperative patient education and consultation. On a 5-point Likert scale, the average level of understanding was scored as 4.7 (range, 3.0-5.0) in group I. In group II, the average response was 2.5 (range, 2.0-3.0). Conclusion : The 3D printed models were accurate and useful for understanding the intracranial aneurysm structure. In this study, 3D printed intracranial aneurysm models were proven to be helpful in preoperative patient consultation.

Feasibility Study on the Methodology of Test and Evaluation for UAV Positioning (무인항공기 위치정확도 시험평가 기법 연구)

  • Ju, Yo-han;Moon, Kyung-kwan;Kang, Bong-seok;Jeong, Jae-won;Son, Han-gi;Cho, Jeong-hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.530-536
    • /
    • 2018
  • Recently, many studies for interoperability of UAV in the NAS has been performed since the application range and demand of UAV are continuously increased. For the interoperation of UAV in the NAS, technical standards and certification system for UAV which is equivalent to the commercial aircraft are required and test and evaluation methodology must be presented by standards. In this paper, qualification test and evaluation methodology aboutfor the UAV navigation system is proposed. For the research, the mission profile and operation environment of UAV were analyzed. Thereafter the test criteria were derived and the test methodology were established. Finally, the simulation and demonstration using test-bed UAV were performed. As a result of the test, it was confirmed that the navigation system of test UAV has a position accuracy about 1.4 meters at 95% confidence level in the entire flight stage.

Investigation of Effects of Lightning and Icing on an e-VTOL UAM Aircraft and a Proposal for Certification Guidance (e-VTOL UAM 항공기의 낙뢰 및 결빙 영향성 분석 및 인증기술에 관한 연구)

  • Kim, Yun-Gon;Jo, Hyeonseung;Jo, Jae-Hyeon;Park, Se-Woong;Myong, Rho-Shin
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.45-56
    • /
    • 2021
  • Demand for UAM (Urban Air Mobility) aircraft is rapidly increasing in countries around the world due to the problem of traffic congestion in urban areas. Through research and development, various e-VTOL aircraft concepts are being prepared for commercialization, for which airworthiness certification is required, since it is a manned transportation mode for people to board. Factors that pose a fatal threat to the safe operation of UAM aircraft include lightning strikes that can cause damage to structures and disturb the navigation system, as well as icing that impairs flight stability. Since the current UAM aircraft-related lightning and icing certification technology development is insufficient, there is need to develop appropriate airworthiness certification guidelines. In this study, after analyzing the laws and regulations related to aircraft by the FAA and the EASA, we tried to incorporate the lightning and icing certification guidelines for the UAM aircraft. We also analyzed the effects of lightning and icing on UAM aircraft using computational simulation, and presented the basis for establishing practical guidelines for the certification of UAM aircraft to be adopted in the future.

Quasi-Transient Method for Thermal Response of Blunt Body in a Supersonic Flow (준-비정상해석 기법을 통한 초음속 유동 내 무딘 물체의 열응답 예측)

  • Bae, Hyung Mo;Kim, Jihyuk;Bae, Ji-Yeul;Jung, Daeyoon;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.495-500
    • /
    • 2017
  • In the boundary layer of supersonic or hypersonic vehicles, there is the conversion from kinetic energy to thermal energy, called aerodynamic heating. Aerodynamic heating has to be considered to design supersonic vehicles, because it induces severe heat flux to surface. Transient heat transfer analysis with CFD is used to predict thermal response of vehicles, however transient heat transfer analysis needs excessive computing powers. Loosely coupled method is widely used for evaluating thermal response, however it needs to be revised for overestimated heat flux. In this research, quasi-transient method, which is combined loosely coupled method and conjugate heat transfer analysis, is proposed for evaluating thermal response with efficiency and reliability. Defining reference time of splitting flight scenario for transient simulation is important on accuracy of quasi-transient method, however there is no algorithm to determine. Therefore the research suggests the algorithm with various flow conditions to define reference time. Supersonic flow field of blunt body with constant acceleration is calculated to evaluate quasi-transient method. Temperature difference between transient and quasi-transient method is about 11.4%, and calculation time reduces 28 times for using quasi-transient method.

GPU-only Terrain Rendering for Walk-through (Walk-through를 지원하는 GPU 기반 지형렌더링)

  • Park, Sun-Yong;Oh, Kyoung-Su;Cho, Sung-Hyun
    • Journal of Korea Game Society
    • /
    • v.7 no.4
    • /
    • pp.71-80
    • /
    • 2007
  • In this paper, we introduce an efficient GPU-based real-time rendering technique applicable to every kind of game. Our method, without an extra geometry, can represent terrain just with a height map. It makes it possible to freely go around in the air or on the surface, so we can directly apply it to any computer games as well as a virtual reality. Since our method is not based on any geometrical structure, it doesn't need special LOD policy and the precision of geometrical representation and visual quality absolutely depend on the resolution of height map and color map. Moreover, GPU-only technique allows the general CPU to be dedicated to more general work, and as a result, enhances the overall performance of the computer. To date, there have been many researches related to the terrain representation, but most of them rely on CPU or confmed its applications to flight simulation, Improving existing displacement mapping techniques and applying it to our terrain rendering, we completely ruled out the problems, such as cracking, poping etc, which cause in polygon-based techniques, The most important contributions are to efficiently deal with arbitrary LOS(Line Of Sight) and dramatically improve visual quality during walk-through by reconstructing a height field with curved patches. We suggest a simple and useful method for calculating ray-patch intersections. We implemented all these on GPU 100%, and got tens to hundreds of framerates with height maps a variety of resolutions$(256{\times}256\;to\;4096{\times}4096)$.

  • PDF

Design Optimization of Multi-element Airfoil Shapes to Minimize Ice Accretion (결빙 증식 최소화를 위한 다중 익형 형상 최적설계)

  • Kang, Min-Je;Lee, Hyeokjin;Jo, Hyeonseung;Myong, Rho-Shin;Lee, Hakjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.445-454
    • /
    • 2022
  • Ice accretion on the aircraft components, such as wings, fuselage, and empennage, can occur when the aircraft encounters a cloud zone with high humidity and low temperature. The prevention of ice accretion is important because it causes a decrease in the aerodynamic performance and flight stability, thus leading to fatal safety problems. In this study, a shape design optimization of a multi-element airfoil is performed to minimize the amount of ice accretion on the high-lift device including leading-edge slat, main element, and trailing-edge flap. The design optimization framework proposed in this paper consists of four major parts: air flow, droplet impingement and ice accretion simulations and gradient-free optimization algorithm. Reynolds-averaged Navier-Stokes (RANS) simulation is used to predict the aerodynamic performance and flow field around the multi-element airfoil at the angle of attack 8°. Droplet impingement and ice accretion simulations are conducted using the multi-physics computational analysis tool. The objective function is to minimize the total mass of ice accretion and the design variables are the deflection angle, gap, and overhang of the flap and slat. Kriging surrogate model is used to construct the response surface, providing rapid approximations of time-consuming function evaluation, and genetic algorithm is employed to find the optimal solution. As a result of optimization, the total mass of ice accretion on the optimized multielement airfoil is reduced by about 8% compared to the baseline configuration.

Improvement of Transfer Alignment Performance for Airborne EOTS (항공용 전자광학추적장비의 전달정렬 성능 개선)

  • Kim, Minsoo;Lee, Dogeun;Jeong, Chiun;Jeong, Jihee
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.60-67
    • /
    • 2022
  • An Electro-Optical Tracking System (EOTS) is an electric optical system with EO/IR cameras, laser sensors, and an IMU. The EOTS calculates coordinates of targets, using attitude and acceleration measured by the IMU. In particular for an armed aircraft, the performance of the weapon system depends on how quickly and accurately it acquires the target coordinates. The IMU should be operated after alignment is complete, to meet the coordinate accuracy required by the weapon system so the initial stabilization time of the IMU should be reduced, by quickly measuring the attitude and acceleration. Alignment is the process of determining the initial attitude by resolving the attitude error of the IMU, and the IMU of mission equipment such as an airborne EOTS, uses velocity matching based on the velocity from GPS/INS for aircraft navigation. In this paper, a method is presented to improve the transfer alignment performance of the airborne EOTS, by maneuvering aircraft and the mission equipment. First, the performance factor of the alignment was identified, as a heading error through the velocity matching model and simulation results. Then acceleration maneuvers and attitude changes were necessary, to correct the error. As a result of flight tests applied to an EOTS on a OOO aircraft system, the transfer alignment performance was improved as the duration time was decreased, by more than five times when the aircraft accelerated by more than 0.2g and the EOTS was moving until 6.7deg/s.