• 제목/요약/키워드: In vivo

검색결과 8,022건 처리시간 0.045초

In Vivo and Ex Vivo Skin Reactions after Multiple Pulses of 1,064-nm, Microlens Array-type, Picosecond Laser Treatment

  • Lyu, Herin;Park, Jinyoung;Lee, Hee Chul;Lee, Sang Ju;Kim, Young Koo;Cho, Sung Bin
    • Medical Lasers
    • /
    • 제9권2호
    • /
    • pp.142-149
    • /
    • 2020
  • Background and Objectives A picosecond-domain laser treatment using a microlens array (MLA) or a diffractive optical element elicits therapeutic micro-injury zones in the skin. This study examined the patterns of tissue reactions after delivering multiple pulses of 1,064-nm, MLA-type, picosecond neodymium:yttrium-aluminum-garnet laser treatment. Materials and Methods Multiple pulses of picosecond laser treatment were delivered to ex vivo human or brown micropig skin and analyzed histopathologically. A high-speed cinematographic study was performed to visualize the multiple pulses of picosecond laser energy-induced skin reactions in in vivo human skin. Results In the ex vivo human skin, a picosecond laser treatment at a fluence of 0.3 J/cm2 over 100 non-stacking passes generated multiple lesions of thermally-initiated laser-induced optical breakdown (TI-LIOB) in the epidermis and dermis. In the ex vivo micropig skin, stacking pulses of 20, 40, 60, 80, and 100 at a fluence of 0.3 J/cm2 generated distinct round to oval zones of tissue coagulation in the mid to lower dermis. High-speed cinematography captured various patterns of twinkling, micro-spot reactions on the skin surface over 100 stacked pulses of a picosecond laser treatment. Conclusion Multiple pulses of 1,064-nm, MLA-type, picosecond laser treatment elicit marked TI-LIOB reactions in the epidermis and areas of round to oval thermal coagulation in the mid to deep dermis.

A Rapid and Convenient Method for in Vivo Fluorescent Imaging of Protoscolices of Echinococcus multilocularis

  • Yang, Tao;Wang, Sibo;Zhang, Xuyong;Xia, Jie;Guo, Jun;Hou, Jixue;Zhang, Hongwei;Chen, Xueling;Wu, Xiangwei
    • Parasites, Hosts and Diseases
    • /
    • 제54권2호
    • /
    • pp.225-231
    • /
    • 2016
  • Human and animal alveolar echinococcosis (AE) are important helminth infections endemic in wide areas of the Northern hemisphere. Monitoring Echinococcus multilocularis viability and spread using real-time fluorescent imaging in vivo provides a fast method to evaluate the load of parasite. Here, we generated a kind of fluorescent protoscolices in vivo imaging model and utilized this model to assess the activity against E. multilocularis protoscolices of metformin (Met). Results indicated that JC-1 tagged E. multilocularis can be reliably and confidently used to monitor protoscolices in vitro and in vivo. The availability of this transient in vivo fluorescent imaging of E. multilocularis protoscolices constitutes an important step toward the long term bio-imaging research of the AE-infected mouse models. In addition, this will be of great interest for further research on infection strategies and development of drugs and vaccines against E. multilocularis and other cestodes.

In vivo tracking of adipose tissue grafts with cadmium-telluride quantum dots

  • Deglmann, Claus J.;Blazkow-Schmalzbauer, Katarzyna;Moorkamp, Sarah;Wallmichrath, Jens;Giunta, Riccardo E.;Rogach, Andrey L.;Wagner, Ernst;Baumeister, Ruediger G.;Ogris, Manfred
    • Archives of Plastic Surgery
    • /
    • 제45권2호
    • /
    • pp.111-117
    • /
    • 2018
  • Background Fat grafting, or lipofilling, represent frequent clinically used entities. The fate of these transplants is still not predictable, whereas only few animal models are available for further research. Quantum dots (QDs) are semiconductor nanocrystals which can be conveniently tracked in vivo due to photoluminescence. Methods Fat grafts in cluster form were labeled with cadmium-telluride (CdTe)-QD 770 and transplanted subcutaneously in a murine in vivo model. Photoluminescence levels were serially followed in vivo. Results Tracing of fat grafts was possible for 50 days with CdTe-QD 770. The remaining photoluminescence was $4.9%{\pm}2.5%$ for the QDs marked fat grafts after 30 days and $4.2%{\pm}1.7%$ after 50 days. There was no significant correlation in the relative course of the tracking signal, when vital fat transplants were compared to non-vital graft controls. Conclusions For the first-time fat grafts were tracked in vivo with CdTe-QDs. CdTe-QDs could offer a new option for in vivo tracking of fat grafts for at least 50 days, but do not document vitality of the grafts.

지르코니아의 생체적합성과 임플란트로서의 생체활성에 대한 연구: In vivo 실험 문헌 고찰 (A review of biocompatibility of zirconia and bioactivity as a zirconia implant: In vivo experiment)

  • 서다원;김영균;이양진
    • 대한치과보철학회지
    • /
    • 제57권1호
    • /
    • pp.88-94
    • /
    • 2019
  • 심미적 치료에 대한 요구가 늘어나면서 높은 강도와 심미성을 갖는 지르코니아의 요구도 증가하고 있다. 이러한 흐름에 비추어 지르코니아의 생체적 합성을 평가하는 것은 중요한 일이다. 이번 논문에서는 지르코니아의 생체적합성에 대한 in vivo 실험에 대한 문헌 연구를 진행하였다. In vivo 실험에서 연조직, 경조직에 대한 지르코니아의 생체적합성을 확인할 수 있었다. 다양한 실험동물 및 환자에서 진행된 연구의 대다수에서 지르코니아의 높은 생체적합성이 보고되었으며, 신생골 합성 및 골부착의 면에서 티타늄과 유사한 성질을 보였다. 한편, 지르코니아는 임플란트로도 활용할 수 있다. 임플란트로 활용하기 위해 HA (hydroxyapatite)를 처리하여 생체활성을 높이는 다양한 방식이 제안되고 있다. 하지만 기존의 티타늄 임플란트에 HA를 코팅하는 방식은 낮은 결합강도 및 HA의 변성으로 인한 문제점이 있었기 때문에 HA-지르코니아 composite, HA-coated 지르코니아, HA-지르코니아 functionally graded material (FGM) 또는 알루미나 개재 HA-지르코니아 등의 새로운 방식이 연구되고 있다. 이러한 방식들은 보다 높은 결합강도를 지니고 있으며, 높은 생체적합성을 보여주고 있다.

체내 또는 체외에서 생산된 한우 수정란을 젖소 수란우에 이식한 결과 (Results of Embryo Transfer with Hanwoo Embryos Produced In-Vivo or In-Vitro to Holstein Cows as Recipients)

  • 김용준;박훈;이해리;신동수;조성우;김용수;김수희
    • 한국수정란이식학회지
    • /
    • 제23권3호
    • /
    • pp.167-175
    • /
    • 2008
  • This study was performed to investigate the result that in-vivo or in-vitro embryos of Hanwoo cows were transferred to Holstein cows. Seventeen Hanwoo cows were used as donors for production of in-vivo embryos and fresh hanwoo in-vivo embryos were transferred to 1,150 Holsteins. And 2 embryos were transferred to 188 Holstein recipients to produce twin calves. Diagnosis on pregnancy was performed by rectal palpation at $60\sim90$ days after transfer. The pregnancy rate of Holstein recipients was 55.8% after transfer with Hanwoo in-vivo embryos and 38.2% after transfer with Hanwoo in-vitro embryos. The delivery rate of pregnant Holstein recipients was 88.4% after transfer with Hanwoo in-vivo embryos and 75.6% after transfer with Hanwoo in-vitro embryos. The rate of delivery of Holstein recipients transferred with two Hanwoo embryos was 36.2% and the rate of twin production was 25.9%. The rate of twin production by embryo transfer with in-vivo embryos was 30.4%, whereas the fate with in-vitro embryos was 15.6%. The pregnancy rate according to the grade of corpus luteum of Holstein recipients transferred with Hanwoo in-vitro embryos was 41.5 and 36.0% for A and B grade, respectively. The pregnancy rate according to the transfer in site in the uterine lumen of recipients was 40.9 and 32.7% for anterior and middle site, respectively. The pregnancy rate according to day of embryo transfer after estrus of recipients was 45.5, 38.8 and 39.7% for day 6, day 7 and day 8, respectively. There was difference of pregnancy rate according embryo transfer technician ($30.5\sim45.8%$) individual dairy farm ($21.1\sim51.0%$). These results are supposed to indicate that the rate of pregnancy after transfer with Hanwoo embryos to Holstein recipients was similar to that within the same breed, and consequently that this method would be beneficial to enhance the productivity in Hanwoo reproduction.

Ex Vivo Lung Perfusion in Lung Transplantation

  • Haam, Seokjin
    • Journal of Chest Surgery
    • /
    • 제55권4호
    • /
    • pp.288-292
    • /
    • 2022
  • Ex vivo lung perfusion (EVLP) is a technique that enables active metabolism of the lung by creating an environment similar to that inside the body, even though the explanted lungs are outside the body. The EVLP system enables the use of lung grafts that do not satisfy the acceptance criteria for lung transplantation (LTx) by making it possible to evaluate the function of the lung grafts and repair lungs in poor condition, thereby reducing the waiting time of patients requiring LTx and consequently mortality.

ErmSF에서 특이적으로 발견되는 N-terminal End Region의 점차적인 제거에 의한 활성에 중요한 아미노산의 규명 (Deletion of N-terminal End Region of ErmSF Leads to an Amino Acid Having Important Role in Methyl Transfer Reaction)

  • 이학진;진형종
    • 미생물학회지
    • /
    • 제40권4호
    • /
    • pp.257-262
    • /
    • 2004
  • ErmSF는 235 rRNA에 존재하는 $A_{2058}$에 이중메틸화(dimethylation)시킴으로써 항생제가 부착되는 것을 억제하여 미생물에게 MLS (macrolide-lincosamide-streptogramin B)항생제에 대하여 내성을 나타내게 하는 ERM계열 단백질(Erm family protein)중의 하나이다. 다른 ERM 단백질과는 달리 ErmSF는 상당히 긴 N-말단부위 (N-terminal end region, NTER)를 가지고 있고 이겻은 RNA와 잘 결합하는 것으로 알려진 arginine이 약 $25\%$를 구성 하고 있다. ErmSF로부터 점차적으로 NTER을 절단하면서 절단된 단백질의 활성을in vivo에서 검색하였다. 다른 변이단백질과는 달리 R60번째까지 제거된 변이단백질은 활성이 많이 소실된 것을 in vivo상에서 관찰하였다. 이 단백질을 대량생산하여 정제하고 in vivo상에서 그 활성을 검색한 결과 wild type 단백질에 비해 약 $98\%$의 활성이 소실된 것을 밝혔다. 이러한 사실은 R60이 메틸화되는 아데닌 (methylatable adenine)의 근처에 존재하는 RNA와 작용하여 메틸화되는 아데닌이 활성화부위에 적절히 위치하도록 하는 역할을 담당한다는 것을 암시하고 있다.

Construction of In Vivo Fluorescent Imaging of Echinococcus granulosus in a Mouse Model

  • Wang, Sibo;Yang, Tao;Zhang, Xuyong;Xia, Jie;Guo, Jun;Wang, Xiaoyi;Hou, Jixue;Zhang, Hongwei;Chen, Xueling;Wu, Xiangwei
    • Parasites, Hosts and Diseases
    • /
    • 제54권3호
    • /
    • pp.291-299
    • /
    • 2016
  • Human hydatid disease (cystic echinococcosis, CE) is a chronic parasitic infection caused by the larval stage of the cestode Echinococcus granulosus. As the disease mainly affects the liver, approximately 70% of all identified CE cases are detected in this organ. Optical molecular imaging (OMI), a noninvasive imaging technique, has never been used in vivo with the specific molecular markers of CE. Thus, we aimed to construct an in vivo fluorescent imaging mouse model of CE to locate and quantify the presence of the parasites within the liver noninvasively. Drug-treated protoscolices were monitored after marking by JC-1 dye in in vitro and in vivo studies. This work describes for the first time the successful construction of an in vivo model of E. granulosus in a small living experimental animal to achieve dynamic monitoring and observation of multiple time points of the infection course. Using this model, we quantified and analyzed labeled protoscolices based on the intensities of their red and green fluorescence. Interestingly, the ratio of red to green fluorescence intensity not only revealed the location of protoscolices but also determined the viability of the parasites in vivo and in vivo tests. The noninvasive imaging model proposed in this work will be further studied for long-term detection and observation and may potentially be widely utilized in susceptibility testing and therapeutic effect evaluation.

In vivo와 in vitro에서 DicA 단백질의 온도 의존적 DNA 결합 (Temperature-dependent DNA binding of DicA protein in vivo and in vitro)

  • 이연호;윤상훈;임헌만
    • 미생물학회지
    • /
    • 제55권3호
    • /
    • pp.181-190
    • /
    • 2019
  • 대장균 세포분열 조절에 관여하는 DicA 단백질은 $37^{\circ}C$보다 $25^{\circ}C$에서 DNA에 더욱 잘 결합한다. 그러나 DicA 단백질의 온도의존적 DNA 결합에 대한 분자적 원인은 명확하지 않다. 본 연구에서는 DicA 단백질이 어떻게 DNA에 결합하며, 왜 온도 의존적 결합양상을 보이는지 알아보았다. In vivo DNA 결합 분석 결과 RovA나 SlyA와 같은 DicA의 상동성 단백질과는 달리 DicA는 N 말단에 있는 DNA 결합 도메인을 이용하여 20개의 염기쌍으로 이루어진 dicC 조절자 유전자(Oc)에 결합함을 보여주었다. 또한 in vivo 실험에서 DicA는 $37^{\circ}C$ 보다 $25^{\circ}C$에서 DNA에 더 잘 결합하는 것으로 알려진 Cnu 또는 H-NS의 영향을 받지 않고 자체적으로 Oc에서의 온도 의존적 DNA 결합을 보인다. 하지만 정제된 DicA 단백질을 이용한 in vitro binding 실험에서는 온도 의존적 DNA 결합이 관찰되지 않았다. Crude 단백질을 이용한 실험에서 DicA 단백질의 온도 의존적 DNA 결합이 관찰되는 것으로 보아 DicA의 온도 의존적 DNA (Oc) 결합은 crude 단백질내에 존재하는 아직 알려지지 않은 in vivo factor에 의해 일어난다.

Molecular Mechanism of Crocin Induced Caspase Mediated MCF-7 Cell Death: In Vivo Toxicity Profiling and Ex Vivo Macrophage Activation

  • Bakshi, Hamid A;Hakkim, Faruck Lukmanul;Sam, Smitha
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권3호
    • /
    • pp.1499-1506
    • /
    • 2016
  • Background: Crocus sativus and its major constituent crocin are well established to have anti-cancer properties in breast cancer cells (MCF-7). However the role of C. sativus extract (CSE) and crocin on caspase signaling mediated MCF-7 cell death at molecular level is remains unclear. In this study, we tried to unravel role of CSE and crocin on caspase mediated MCF-7 cells death and their in vivo preclinical toxicity profiling and immune stimulatory effect. Materials and Methods: CSE extract was fractionated by HPLC and crocin was isolated and characterized by NMR, IR, and MS. MCF-7 cells were treated with both CSE and crocin and expression of Bcl-2 and Bax was assessed after 24 and 36 hours. Furthermore, caspase 3, caspase 8 and caspase 9 expression was determined by Western blotting after 24 hours of treatment. DNA fragmentation analysis was performed for genotoxicity of CSE and crocin in MCF-7 cells. The in vivo toxicity profile of CSE (300 mg/kg of b.wt) was investigated in normal Swiss albino mice. In addition, peritoneal macrophages were collected from crocin (1, 1.5 and 2 mg/kg body weight) treated mice and analyzed for ex vivo yeast phagocytosis. Results: Immunoblot analysis revealed that there was time dependent decline in anti-apoptotic Bcl-2 with simultaneous upregulation of Bax in CSE and crocin treated MCF-7 cells. Further CSE and crocin treatment downregulated caspase 8 and 9 and cleaved the caspase 3 after 24 hours. Both CSE and crocin elicited considerable DNA damage in MCF-7 cells at each concentration tested. In vivo toxicity profile by histological studies revealed no observable histopathologic differences in the liver, kidney, spleen, lungs and heart in CSE treated and untreated groups. Crocin treatment elicited significant dose and time dependent ex vivo yeast phagocytosis by peritoneal macrophages. Conclusions: Our study delineated involvement of pro-apoptotic and caspase mediated MCF-7 cell death by CSE and crocin at the molecular level accompanied with extensive DNA damage. Further we found that normal swiss albino mice can tolerate the maximum dose of CSE. Crocin enhanced ex vivo macrophage yeast phagocytic ability.