Browse > Article

Deletion of N-terminal End Region of ErmSF Leads to an Amino Acid Having Important Role in Methyl Transfer Reaction  

Lee Hak Jin (Department of Genetic Engineering, College of Natural Science, The University of Suwon)
Jin Hyung Jong (Department of Genetic Engineering, College of Natural Science, The University of Suwon)
Publication Information
Korean Journal of Microbiology / v.40, no.4, 2004 , pp. 257-262 More about this Journal
Abstract
ErmSF is one of the ERM proteins which transfer the methyl group to A2058 in 23S rRNA to confer the resis­tance to MLS (macrolide-lincosamide-streptogramin B) antibiotics on microorganism. Unlike other ERM pro­teins, ErmSF contains long N-terminal end region (NTER), of which $25\%$ is composed of arginine that is known to interact with RNA well. Gradual deletion of NTER leaded us to the point where mutant protein lost much of activity in vivo. Overexpressed and purified mutant protein showed much reduced activity in vitro: $2\%$ activity relative to that of wild type protein. This fact suggests that this amino acid interact with RNA close to meth­ylatable adenine to locate it at an active site properly.
Keywords
ErmSF; in vivo activity; in vivo activity; MLS (macrolide-incosamide-streptogramin B) antibiotic resistance factor protein;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Buriankova, K., F.D. Populaire, O. Dorson, A. Dondran, J.C. Ghnassia, J. Weiser, and J.L. Nd Pernadet. 2004. Molecular basis of intrinsic macrolideresistance in the Mycobacterium tuberculosis complex. Antimicrob. Agents Chemother. 48, 143-150
2 Bussiere, D.E., S.W. Muchmore, C.G. Dealwis, G. Schluckebier, V.L. Nienaber, R.P. Edalji, K.A. Walter, U.S. Ladror, T. F. Holzman, C. Abad-Zapatero. 1998 Crystal structure of ErmC', an rRNA methyltransferase which mediates antibiotic resistance in bacteria. Biochemistry. 37, 7103-7112
3 'Frontiers in Biotechnology : Antibiotic Resistance' 1994. Science 264, 317-476
4 Kovalic, D., J.H. Kwak, and B. Weisblum. 1991. General method for direct cloning of DNA fragments generated by the polymerase chain reaction. Nucleic Acid Res. 19, 4650
5 Skinner, R., E. Cundliffe, and F.J. Schmidt. 1983. Site for Action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J. Biol. Chem. 258, 12702-12706
6 Weisblum, B. 1995. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39, 577-585
7 Zalacain, M. and E. Cundliffe. 1991. Cloning of tlrD, a fourth resistance gene, from the tylosin producer, Streptomyces fradiae. Gene 97, 137-142
8 Zalacain, M. and E. Cundliffe. 1989. Methylation of 23S rRNA by tlrA(ermSF), a tylosin resistance determinant from Streptomyces fradiae. J. Bacteriol. 171, 4254-4260   DOI   PUBMED
9 Lai, C.J., B. Weisblum, S.R. Fahnestock, and M. Nomura. 1973. Alteration of 23 S ribosomal RNA and erythromycin-induced resisitance to lincomycin and spiramycin in Staphylococcus aureus. J. Mol. Biol. 74, 67-72
10 Jin H.J. and Y.D. Yang. 2002. Purification and biochemical characterization of the ErmSF macrolide-lincosamide-streptogramin B resistance factor protein expressed as a hexahistidine-tagged protein in Escherichia coli. Protein Expr. Purif. 25, 149-59
11 Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T. Nature. 227, 680-685
12 Cundliffe, E. 1989. How antibiotic-producing organisms avoid suicide. Annu. Rev. Microbiol. 43, 207-223
13 Jin, H.J. 1999. ermSF, a ribosomal RNA adenine N$_6$-methyltransferase gene from Streptomyces fradiae, confers MLS (macrolidelincosamide- streptogramin B) resistance to E. coli when it is expressed. Mol. Cells 9, 252-25
14 Liu M. and S. Douthwaite. 2002. Methylation at nucleotide G745 or G748 in 23S rRNA distinguishes Gram-negative from Grampositive bacteria. Mol. Microbiol. 44, 195-204
15 Rosteck Jr, R.R., P.A. Reynolds, and C.L. Hershberger. 1991. Homology between proteins controlling Streptomyces fradiaetylosin resistance and ATP-binding transport. Gene 102, 27-32.19
16 진형종. 2001. MLS (macrolide-lincosamide-streptogramin B) 항생제 내성인자 단백질인 ErmSF domain 발현. Kor. J. Microbiol. 37, 245-252
17 Maravic, G., M. Feder, S. Ponger, M. Fogel, and J.M. Bujnicki. 2003. Mutational analysis defines the roles of conserved amino acid residues in the predicted catalytic pocket of the rRNA:m$^6$A methyltransferase ErmC´. J. Mol. Biol. 332, 99-109
18 Schluckebier G, Zhong P, Stewart KD, Kavanaugh TJ, Abad-Zapatero C. 1999. The 2.2 $\AA$ structure of the rRNA methyltransferase ErmC' and its complexes with cofactor and cofactor analogs: implications for the reaction mechanism. J Mol. Biol. 289, 277- 291   DOI   ScienceOn
19 Vester, B., and S. Douthewaite. 1994. Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methytransferase. J. Bacteriol. 176, 6999-7004
20 Kovalic, D., R.B. Giannattasio, H.J. Jin, and B. Weisblum. 1994. 23S rRNA Domain V, a fragment that can be specifically methylated in vitro by the ErmSF (TlrA) methyltransferase. J. Bacteriol. 176, 6992-699
21 Roberts, M.C., J. Sutcliffe, P. Courvalin, L.B. Jensen, J. Rood, and H. Seppala. 1999. Nomenclature for macrolide and macrolide-lincomycin- streptogramin B resistance determinants. Antimicrob. Agents Chemother. 43, 2823-2830
22 Gandecha, A.R. and E. Cundliffe. 1996. Molecular analysis of tlrD, an MLS resistance determinant from tylosin producer, Streptomyces fradiae. Gene 180, 173-176
23 Kamimiya, S. and B. Weisblum. 1988. Translation attenuation control of ermSF, an inducible resistance determinant encoding rRNA N-methyltransferase from Streptomyces fradiae. J. Bacteriol. 170, 1800-1811
24 Birmingham, V.A., K.L. Cox, J.L. Larson, S.E. Fishman, C.L. Hershberger, and E.T. Seno. 1986. Cloning and expression of a tylosin resistance gene from a tylosin-producing strain of Streptomyces fradiae. Mol. Gen. Genet. 204, 532-539