• Title/Summary/Keyword: In vitro gas production

Search Result 262, Processing Time 0.025 seconds

Low Ruminal pH Reduces Dietary Fiber Digestion via Reduced Microbial Attachment

  • Sung, Ha Guyn;Kobayashi, Yasuo;Chang, Jongsoo;Ha, Ahnul;Hwang, Il Hwan;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.200-207
    • /
    • 2007
  • In vitro rumen incubation studies were conducted to determine effects of initial pH on bacterial attachment and fiber digestion. Ruminal fluid pH was adjusted to 5.7, 6.2 and 6.7, and three major fibrolytic bacteria attached to rice straw in the mixed culture were quantified with real-time PCR. The numbers of attached and unattached Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminocococcus albus were lower (p<0.05) at initial pH of 5.7 without significant difference between those at higher initial pH. Lowering incubation media pH to 5.7 also increased bacterial numbers detached from substrate regardless of bacterial species. Dry matter digestibility, gas accumulation and total VFA production were pH-dependent. Unlike bacterial attachment, maintaining an initial pH of 6.7 increased digestion over initial pH of 6.2. After 48 h in vitro rumen fermentation, average increases in DM digestion, gas accumulation, and total VFA production at initial pH of 6.2 and 6.7 were 2.8 and 4.4, 2.0 and 3.0, and 1.2 and 1.6 times those at initial pH of 5.7, respectively. The lag time to reach above 2% DM digestibility at low initial pH was taken more times (8 h) than at high and middle initial pH (4 h). Current data clearly indicate that ruminal pH is one of the important determinants of fiber digestion, which is modulated via the effect on bacterial attachment to fiber substrates.

Effects of Sown Season and Maturity Stage on In vitro Fermentation and In sacco Degradation Characteristics of New Variety Maize Stover

  • Tang, S.X.;Li, F.W.;Gan, J.;Wang, M.;Zhou, C.S.;Sun, Z.H.;Han, X.F.;Tan, Z.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.781-790
    • /
    • 2011
  • The effects of seedtime and maturity stage on nutritive value of five maize stover varieties, including conventional maize (Kexiangyu 11, CM), fodder maize (Huqing 1, FM), high oil maize (Gaoyou 115, HOM), sweet maize (Kexiangtianyu 1, SM) and waxy maize (Kexiangluoyu 1, WM), were examined based on chemical composition, in vitro gas production and in situ incubation techniques. Maize stover was sampled at d 17 and d 30 after tasseling, and designated as maturity stage 1 and stage 2, respectively. The average dry matter (DM) organic matter (OM), crude protein (CP) and fiber contents were the greatest for HOM, SM and FM, respectively. CM had the highest in vitro organic matter disappearance (IVOMD) and volatile fatty acid (VFA) concentration. The highest ammonia nitrogen ($NH_3$-N) concentration in the incubation solution, and effective degradability of DM ($ED_{DM}$) and neutral detergent fiber ($ED_{NDF}$) were observed in SM. Advanced maturity stage increased (p<0.05) DM content, $ED_{DM}$ and $ED_{NDF}$, but decreased (p<0.05) OM and CP contents, and decreased (p<0.05) b and a+b values, IVOMD and molar proportion of valerate in the incubation solution for maize stover. Maize sown in summer had greater (p<0.05) OM content, but lower DM, CP, neutral detergent fiber (NDF) and acid detergent fiber (ADF) content compared with maize sown in spring. Maize sown in summer had greater (p<0.001) IVOMD, $NH_3$-N concentration in the incubation solution and $ED_{NDF}$, but lower (p<0.01) ratio of acetate to propionate compared to maize sown in spring. The interaction effect of variety${\times}$seedtime was observed running through almost all chemical composition, in vitro gas production parameters and in situ DM and NDF degradability. The overall results suggested that SM had the highest nutrient quality, and also indicated the possibility of selecting maize variety and seedtime for the utilization of maize stover in ruminants.

Effects of zinc-bearing palygorskite on rumen fermentation in vitro

  • Chen, Mengjiao;Xi, Yumeng;Zhang, Lin;Zeng, Hanfang;Li, Yeqing;Han, Zhaoyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.1
    • /
    • pp.63-71
    • /
    • 2019
  • Objective: The aim of the study was to investigate the effect of zinc-bearing palygorskite (Zn-Pal) on rumen fermentation by in vitro gas-production system. Methods: In trial, 90 incubators were evenly divided into five groups: control (0% Zn-Pal), treatment I (0.2% Zn-Pal), treatment II (0.4% Zn-Pal), treatment III (0.6% Zn-Pal), and treatment IV (0.8% Zn-Pal). The contents of zinc for treatments were 0, 49, 98, 147, 196 mg/kg, respectively. The main chemical composition and microstructure of Zn-Pal was investigated by X-ray diffraction. The physicochemical features were evaluated by Zeta potential analysis, cation-exchange capacity, ethylene blue absorption and specific surface area (the Brunauer-Emmett-Teller method). In vitro gas production (GP) was recorded at 3, 6, 9, 12, 18, 24, 36, 48, 60, and 72 h incubation. Incubation was stopped at 0, 6, 12, 24, 48, and 72 h and the inoculants were tested for pH, microbial protein yield (MCP), $NH_3-N$, volatile fatty acids (VFAs), lipopolysaccharide (LPS). Results: The results showed that the GP in the treatment groups was not significantly different from the control groups (p>0.05). Compared to the control group, pH was higher at 24 h, 48 h (p<0.05), and 72 h (p<0.01) (range 6 to 7). The concentration of $NH_3-N$ in the three treatment groups was higher than in the control group at 24 h (p<0.01), meanwhile, it was lower at 48 h and 72 h (p<0.01), except in the treatment IV. The concentration of MCP in treatment I group was higher than in the control at 48 h (p<0.01). Compared with control, the LPS concentration in treatment III became lower at 12 h (p<0.05). Total VFAs in treatments were higher than in the control at 24 h, 48 h (p<0.05). Conclusion: These results suggest that the addition of Zn-Pal can improve the rumen fermentation, especially when adding 0.2% Zn-Pal.

Effects of Lactic Acid Bacteria Inoculant on Fermentation Quality and in vitro Rumen Fermentation of Total Mixed Ration

  • Choi, Yeon Jae;Lee, Sang Suk
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.3
    • /
    • pp.132-140
    • /
    • 2019
  • Fermented total mixed ration (TMR) is a novel feed for ruminants in South Korea. The purpose of this study was to evaluate the effects of lactic acid bacteria (LAB) on the quality of TMR and in vitro ruminal fermentation. Strains of three LAB spp. (Lactobacillus plantarum, L. brevis, L. mucosae) were used in fermentation of TMR. Inoculations with the three LAB spp. lowered pH and increased concentrations of lactic acid, acetic acid, and total organic acid compared to non-LAB inoculated control (only addition of an equivalent amount of water) (p<0.05). Bacterial composition indicated that aerobic bacteria and LAB were higher. However, E. coli were lower in the fermented TMR than those in the control treatment (p<0.05). Among the treatments, L. brevis treatment had the highest concentration of total organic acid without fungus detection. Gas production, pH, and ammonia-nitrogen during ruminal in vitro incubation did not differ throughout incubation. However, ruminal total VFA concentration was higher (p<0.05) in the LAB spp. treatments than the control treatment at 48 hours. Overall, the use of L. brevis as an inoculant for fermentation of high moisture. TMR could inhibit fungi growth and promote lactic fermentation, and enhance digestion in the rumen.

Seasonal Changes in Nutritive Value of Some Grass Species in West Sumatra, Indonesia

  • Evitayani, Evitayani;Warly, L.;Fariani, A.;Ichinohe, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.12
    • /
    • pp.1663-1668
    • /
    • 2004
  • This study was carried out to evaluate the potential nutritive value of commonly found grasses collected at native pasture in West Sumatra, Indonesia during dry and rainy seasons. Variables measured included chemical composition, in vitro digestibility, concentration of Ca, P and Mg, gas production and metabolizable energy (ME) content of the grasses. The results showed that species and season had significant effect on chemical composition and mineral concentration. Crude protein content in the dry season ranged from 6.5% (B. decumbens) to 14.4% (P. maximum) and increased slightly from 7.8% (B. decumbens) to 14. 8% (A. compressus) in the rainy season. Data on fiber fraction showed that grass contained more NDF, ADF and ADL in dry season than in rainy season. Data on mineral concentration showed that C. plectostachyus and P. maximum in dry season had higher Ca than those of other species, while in rainy season P. maximum had highest Ca concentration. In dry season, the DMD varied from 50. 4% (P.purpuphoides) to 59.1% (P. purpureum), while in rainy season ranged from 50.3% (A. gayanus) to 61.8% (P. purpureum). The potential and rate of gas production were significantly (p<0.05) affected by species and season. During dry season, potential of gas production ranged from 21.8 ml/200 mg (A. compressus) to 45.1 ml/200 mg (C. plectostachyus), while in rainy season it varied from 35.6 ml/200 mg (A. gayanus) to 47.5 ml/200 mg (P. purpureum). ME content of grasses varied from 6.0 to 8.3 MJ/kg in dry season and increased slightly from 6.4 to 8.6 MJ/kg in rainy season. Both in dry and rainy seasons, the highest ME content was occurred in P. purpureum and C. plectostachyus. In conclusion, nutritive value of the observed grasses in West Sumatra, Indonesia was relatively higher during rainy season compared with dry season. Pennisetum purpureum and Cynodon plectostachyus had the best nutritive value in both dry and rainy seasons.

Use of Nitrate-nitrogen as a Sole Dietary Nitrogen Source to Inhibit Ruminal Methanogenesis and to Improve Microbial Nitrogen Synthesis In vitro

  • Guo, W.S.;Schaefer, D.M.;Guo, X.X.;Ren, L.P.;Meng, Qingxiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.542-549
    • /
    • 2009
  • An in vitro study was conducted to determine the effect of nitrate-nitrogen used as a sole dietary nitrogen source on ruminal fermentation characteristics and microbial nitrogen (MN) synthesis. Three treatment diets were formulated with different nitrogen sources to contain 13% CP and termed i) nitrate-N diet (NND), ii) urea-N diet (UND), used as negative control, and iii) tryptone-N diet (TND), used as positive control. The results of 24-h incubations showed that nitrate-N disappeared to background concentrations and was not detectable in microbial cells. The NND treatment decreased net $CH_4$ production, but also decreased net $CO_2$ production and increased net $H_2$ production. Total VFA concentration was lower (p<0.05) for NND than TND. Suppression of $CO_2$ production and total VFA concentration may be linked to increased concentration of $H_2$. The MN synthesis was greater (p<0.001) for NND than UND or TND (5.74 vs. 3.31 or 3.34 mg/40 ml, respectively). Nitrate addition diminished methane production as expected, but also increased MN synthesis.

Evaluation of feed value of a by-product of pickled radish for ruminants: analyses of nutrient composition, storage stability, and in vitro ruminal fermentation

  • Jeon, Seoyoung;Sohn, Keun-Nam;Seo, Seongwon
    • Journal of Animal Science and Technology
    • /
    • v.58 no.9
    • /
    • pp.34.1-34.9
    • /
    • 2016
  • Background: By-products of pickled radish (BPR) are considered food waste. Approximately 300 g/kg of the total mass of raw materials becomes BPR. Production of pickled radish has grown continuously and is presently about 40,000 metric tons annually in Korea. The objective of the present study was thus to explore the possibility of using BPR as a ruminant feed ingredient. Results: BPR contained a large amount of moisture (more than 800 g/kg) and ash, and comprised mostly sodium (103 g/kg DM) and chloride (142 g/kg DM). On a dry matter basis, the crude protein (CP) and ether extract (EE) levels in BPR were 75 g/kg and 7 g/kg, respectively. The total digestible nutrient (TDN) level was 527 g/kg and the major portion of digestible nutrients was carbohydrate; 88 % organic matter (OM) was carbohydrate and 65 % of total carbohydrate was soluble or degradable fiber. The coefficient of variation (CV) of nutrient contents among production batches ranged from 4.65 to 33.83 %. The smallest CV was observed in OM, and the largest, in EE. The variation in CP content was relatively small (10.11 %). The storage stability test revealed that storage of BPR at $20^{\circ}C$ (room temperature) might not cause spoilage for 4 d, and possibly longer. If BPR is refrigerated, spoilage can be deferred for 21 d and longer. The in vitro ruminal fermentation study showed that substitution of annual ryegrass straw with BPR improved ruminal fermentation, as evidenced by an increase in VFA concentration, DM degradability, and total gas production. Conclusion: The major portion of nutrients in BPR is soluble or degradable fiber that can be easily fermented in the rumen without adverse effects, to provide energy to ruminant animals. Although its high sodium chloride content needs to be considered when formulating a ration, BPR can be successfully used as a feed ingredient in a ruminant diet, particularly if it is one component of a total mixed ration.

Effects of Activated Charcoal on in vitro Ruminal Fermentation Characteristics and Nutrient Disappearances (사료에 대한 활성탄의 첨가가 in vitro 시험시의 발효성상 및 영양소 소실율에 미치는 영향)

  • Lee, B.D.;Lee, S.K.;Lee, K.D.
    • Korean Journal of Agricultural Science
    • /
    • v.26 no.2
    • /
    • pp.25-32
    • /
    • 1999
  • An in vitro study was conducted to examine the effects of the addition of activated charcoal (AC) on the ruminal fermentation characteristics, nutrient disappearance, and ruminal gas production. AC was added at the levels of 0.00, 0.25, and 0.50 % to each of the four types of diets (roughage/concentrate ratio : 8/2, 6/4, 4/6 and 2/8), respectively. Although not significant, ruminal pH tended to increase by adding AC, and as the concentrate level increased, ruminal pH decreased (P<0.05). Acetate concentration and acetate/propionate molar ratio tended to decrease in AC diets. but molar % of propionate tended to increase by the addition of AC. Ruminal degradation of dry matter, crude protein, NDF, ADF, and hemicellulose in AC diets tended to increase than in non-AC diet, however, no tendency in ruminal degradation of crude fat was observed. As the concentrate level increased, rumunal degradation of dry matter and nutrients in AC diets increased significantly(P<0.05). Ruminal gas production tended to decrease in the 0.50 % AC diets, however, it tended to increase in high roughage diets. Although there appeared some beneficial effects in adding AC to ruminant diets in this study, more works should be done with AC before we can make clear conclusion on the use of AC in the ruminant diets.

  • PDF

Nutritional Evaluation of Rice with Different Processing Treatments on in vitro Rumen Fermentation Characteristics and in situ Degradation (재고미의 가공처리에 따른 in vitro, in situ 소화율 및 발효성상 평가)

  • Yang, Sung-Jae;Jung, Eun-Sang;Kim, Han-Been;Shin, Taek-Soon;Cho, Byung-Wook;Cho, Seong-Keun;Kim, Byeong-Woo;Seo, Ja-Kyeom
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.2
    • /
    • pp.281-296
    • /
    • 2018
  • This study was conducted to evaluate the effect of different processing of rice on rumen fermentation in in vitro and in situ experiments. Different processing treatments (extruding, roasting, and steaming) were used in this study and all treatments were ground through a cyclone mill (Foss, Hillerød, Denmark) fitted with a 1 mm screen. Non-treated rice was considered to a control substrate. Then, all treatments were used in in vitro and in situ experiments. Total gas production and dry matter digestibility in control were lower than any other treatment at all incubation times (P<0.01). The lowest ammonia nitrogen ($NH_3-N$) concentration was observed in control among treatments at 6, 12, and 24 h incubation (P<0.01). Extruding had a highest total volatile fatty acids (VFA) concentration at 6, 12 h incubation (P<0.01) and Steaming exhibited a highest total VFA at 24 h (P<0.01). The lowest total VFA concentration was observed in control at 6, 12, and 24 h (P<0.01). In an in situ, The highest value of soluble fraction, degradation rates, effective degradability was observed in extruding (P<0.01). It was considered that feed processing increased dry matter digestibility, total VFA concentration, and decreased pH as well as $NH_3-N$ concentration indicating that processing may increase nutrient degradation of rice in the rumen.

Effects of Flavonoid-rich Plant Extracts on In vitro Ruminal Methanogenesis, Microbial Populations and Fermentation Characteristics

  • Kim, Eun T.;Guan, Le Luo;Lee, Shin J.;Lee, Sang M.;Lee, Sang S.;Lee, Il D.;Lee, Su K.;Lee, Sung S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.530-537
    • /
    • 2015
  • The objective of this study was to evaluate the in vitro effects of flavonoid-rich plant extracts (PE) on ruminal fermentation characteristics and methane emission by studying their effectiveness for methanogenesis in the rumen. A fistulated Holstein cow was used as a donor of rumen fluid. The PE (Punica granatum, Betula schmidtii, Ginkgo biloba, Camellia japonica, and Cudrania tricuspidata) known to have high concentrations of flavonoid were added to an in vitro fermentation incubated with rumen fluid. Total gas production and microbial growth with all PE was higher than that of the control at 24 h incubation, while the methane emission was significantly lower (p<0.05) than that of the control. The decrease in methane accumulation relative to the control was 47.6%, 39.6%, 46.7%, 47.9%, and 48.8% for Punica, Betula, Ginkgo, Camellia, and Cudrania treatments, respectively. Ciliate populations were reduced by more than 60% in flavonoid-rich PE treatments. The Fibrobacter succinogenes diversity in all added flavonoid-rich PE was shown to increase, while the Ruminoccocus albus and R. flavefaciens populations in all PE decreased as compared with the control. In particular, the F. succinogenes community with the addition of Birch extract increased to a greater extent than that of others. In conclusion, the results of this study showed that flavonoid-rich PE decreased ruminal methane emission without adversely affecting ruminal fermentation characteristics in vitro in 24 h incubation time, suggesting that the flavonoid-rich PE have potential possibility as bio-active regulator for ruminants.