DOI QR코드

DOI QR Code

Nutritional Evaluation of Rice with Different Processing Treatments on in vitro Rumen Fermentation Characteristics and in situ Degradation

재고미의 가공처리에 따른 in vitro, in situ 소화율 및 발효성상 평가

  • 양성재 (부산대학교 동물생명자원과학과) ;
  • 정은상 (부산대학교 바이오환경에너지학과) ;
  • 김한빈 (부산대학교 동물생명자원과학과) ;
  • 신택순 (부산대학교 동물생명자원과학과) ;
  • 조병욱 (부산대학교 동물생명자원과학과) ;
  • 조성근 (부산대학교 동물생명자원과학과) ;
  • 김병우 (부산대학교 동물생명자원과학과) ;
  • 서자겸 (부산대학교 동물생명자원과학과)
  • Received : 2018.02.14
  • Accepted : 2018.04.23
  • Published : 2018.05.31

Abstract

This study was conducted to evaluate the effect of different processing of rice on rumen fermentation in in vitro and in situ experiments. Different processing treatments (extruding, roasting, and steaming) were used in this study and all treatments were ground through a cyclone mill (Foss, Hillerød, Denmark) fitted with a 1 mm screen. Non-treated rice was considered to a control substrate. Then, all treatments were used in in vitro and in situ experiments. Total gas production and dry matter digestibility in control were lower than any other treatment at all incubation times (P<0.01). The lowest ammonia nitrogen ($NH_3-N$) concentration was observed in control among treatments at 6, 12, and 24 h incubation (P<0.01). Extruding had a highest total volatile fatty acids (VFA) concentration at 6, 12 h incubation (P<0.01) and Steaming exhibited a highest total VFA at 24 h (P<0.01). The lowest total VFA concentration was observed in control at 6, 12, and 24 h (P<0.01). In an in situ, The highest value of soluble fraction, degradation rates, effective degradability was observed in extruding (P<0.01). It was considered that feed processing increased dry matter digestibility, total VFA concentration, and decreased pH as well as $NH_3-N$ concentration indicating that processing may increase nutrient degradation of rice in the rumen.

본 연구에서는 재고미의 사료가치 평가를 위해 무처리(Control)를 비롯한 Extruding, Roasting, Steam 처리구들의 영양소 성분분석, in vitro 소화율, in situ 소화율을 분석하였다. In vitro 실험에서 Extruding은 건물 소화율과 gas 발생량이 타 처리구에 비해 상대적으로 높았고, 가장 낮은 pH를 보였으며, 특히 배양 시간 초기에 소화가 신속히 발생하였다. $NH_3-N$ 함량은 배양 6 h 이후에서 Control이 Extruding, Roasting, Steam에 비해 유의적으로 높은 값을 보였고, 이는 가열처리된 단백질의 반추위 미생물의 이용성 저하에 따른 결과로 보이나, 더 정확한 결과를 위해 건물 소화율 분석뿐 아니라 CP 소화율 분석이 필요할 것으로 사료된다. VFA 발생량에서는 Extruding이 다른 처리구들에 비해 배양 6, 12 h에서 유의적으로 높았는데 이는 Extruding 처리구의 분해가 배양 초기에 주로 이어져 발생한 결과로 추정된다. 전분을 발효시키는 박테리아에 의해 높은 비율로 생산되는 propionate 증가 폭에서도 같은 경향을 보였다. In situ 소화율은 in vitro의 소화율과는 다소 차이가 있는 것으로 여겨지나, 이는 실험 방법에 대한 오차로 여겨질 수 있으며, ED(유효분해율)를 통해 in vitro 시험과 소화율의 경향성이 유사한 것을 알 수 있었다. 따라서 본 연구결과를 근거로 상대적으로 적합한 사료가공 처리방법은 무처리, Roasting 및 Steaming인 것으로 보여진다. 또한 무처리(control)의 경우 가공처리에 따른 추가비용 발생이 없으므로 경제적으로 유리할 것으로 판단된다. 재고미가 TMR의 원료로 이용될 수 있다면 국내에서 자급 가능한 사료원료로써 우수한 경제성을 지닐 수 있을 것이다.

Keywords

References

  1. Aguilera, J. F., M. Bustos, and E. Molina. 1992. The Degradability of Legume Seed Meals in the Rumen: Effect of Heat Treatment. J. Anim. Feed Sci. Technol. 36: 101-112. https://doi.org/10.1016/0377-8401(92)90090-S
  2. Association of Official Analytical Chemists. Official Methods of Analysis. 2005. 18 th ed. Gaithersburg (MD): AOAC Inc.
  3. Bae, G. S., E. J. Kim, T. H. Song, T. H. Song, T. I. Park, N. J. Kwon, H. Chan, and M. B. Chang. 2014. Effect of Byproducts Supplementation by Partially Replacing Soybean Meal to a Total Mixed Ration on Rumen Fermentation Characteristics In Vitro. J. Korean Soc. Grassl. Forage Sci. 34: 129-140. https://doi.org/10.5333/KGFS.2014.34.2.129
  4. Bryant, M. P. and I. M. Robinson. 1963. Apparent Incorporation of Ammonia and Amino Acid Carbon During Growth of Selected Species of Ruminal Bacteria. J. Dairy Sci. 46: 150-154. https://doi.org/10.3168/jds.S0022-0302(63)88991-2
  5. Erwin, E. S., G. J. Marco, and E. M. Emer. 1961. Volatile Fatty Acid Analyses of Blood and Rumen Fluid by Gas Chromatography. J. Dairy Sci. 44: 1768-1771. https://doi.org/10.3168/jds.S0022-0302(61)89956-6
  6. Goering, H. K. and P. J. Van Soest. 1970. Forage Fiber Analyses: Apparatus, Reagents, Procedures, and Some Applications. US Agricultural Research Service.
  7. Hall, M. B. 2009. Determination of Starch, Including Maltooligosaccharides, in Animal Feeds: Comparison of Methods and A Method Recommended for AOAC Collaborative Study. J. AOAC Int. 92: 42-49.
  8. Kim, S. K. and M. S. Shin. Physicochemical Properties of Defatted Nonwaxy and Waxy Rice Starches. 1992. Korean J. Food Sci. Technol. 24: 347-352.
  9. Konishi, C., T. Matsui, W. Park, H. Yano, and F. Yano. 1999. Heat Treatment of Soybean Meal and Rapeseed Meal Suppresses Rumen Degradation of Phytate Phosphorous in Sheep. J. Anim. Feed Sci. Technol. 80: 115-122. https://doi.org/10.1016/S0377-8401(99)00044-9
  10. Krishnamoorthy, U., T. V. Muscato, C. J. Sniffen, and P. J. Van Soest. 1982. Borate-Phosphate Procedure as Detailed in Nitrogen Fractions in Selected Feedstuffs. J. Dairy Sci. 65: 217-225. https://doi.org/10.3168/jds.S0022-0302(82)82180-2
  11. Lee, S. M., T. W. Kang, S. J. Lee, J. U. Ok, Y. H. Moon, and S. S. Lee. 2006. Studies on In Situ and In Vitro Degadabilities, Microbial Growth and Gas Production of Rice, Barley and Corn. J. Anim. Sci. Technol. 48: 699-708. https://doi.org/10.5187/JAST.2006.48.5.699
  12. Licitra, G., T. M. Hernandez, and P. J. Van Soest. 1996. Standardization of Procedures For Nitrogen Fractionation of Ruminant Feeds. J. Anim. Feed Sci. Technol. 57: 347-358. https://doi.org/10.1016/0377-8401(95)00837-3
  13. Lii, C. Y., M. L. Tsai, and K. H. Tseng. 1996. Effect of Amylose Content on The Rheol- ogical Property of Rice Starch. Cereal Chem. 73: 415-420.
  14. Ministry of agriculture, food and rural affairs. 2015. Mid to Long Term Supply-Demand Stability Measures of Rice.
  15. Moon, Y. H., J. B. Yang, and I. C. Jung. 2011. Effect of Feeding Mugwort (Artemisia Capillaris) TMR Fodder on Physicochemical and Sensory Characteristics of Hanwoo Rump Meat. J. East Asian. Soc. Diet. Life. 21: 345-352.
  16. National Research Council. 2000. Nutrient Requirements of Beef Cattle. 7 th ed. National Academies Press. Washington, D.C. USA.
  17. National Research Council. 2001. Nutrient Requirements of Dairy Cattle. 7 th ed. National Academic Press. Washington, D.C. USA.
  18. National Research Council. 2016. Nutrient Requirements of Beef Cattle. 8 th ed. National Academic Press. Washington, D.C. USA.
  19. Nikkhah, A. 2015. Rice for Ruminants: Race for a Science Under Shadow. J. Rice Res. 3: 134.
  20. Offner, A., B. Alex, and S. Daniel. 2003. Quantitative Review of In situ Starch Degradation in the Rumen. J. Anim. Feed Sci. Technol. 106: 81-93. https://doi.org/10.1016/S0377-8401(03)00038-5
  21. Oh, Y. K., K. H. Kim, C. W. Choi, S. W. Kang, I. B. Chung, and W. G. Nho. 2006. Evaluation of Feeding Value of Brown Rice in Korean Native Beef Steers (Hanwoo). J. Anim. Sci. Technol. 48: 393-400. https://doi.org/10.5187/JAST.2006.48.3.393
  22. Orskov, E. R. 1976. The Effect of Processing on Digestion and Utilization of Cereals by Ruminants. Proc. Nutr. Soc. 35: 245-252. https://doi.org/10.1079/PNS19760038
  23. Orskov, E. R. 1986. Starch Digestion and Utilization in Ruminants. J. Anim. Sci. 63: 1624-1633. https://doi.org/10.2527/jas1986.6351624x
  24. Orskov, E. R and I. McDonald. 1979. The Estimation of Protein Degradability in the Rumen from Incubation Measurements Weighted According to Rate of Passage. J. Agr. Sci. 92: 499-503. https://doi.org/10.1017/S0021859600063048
  25. Owens, F. N., D. S. Secrist, W. J. Hill, and D. R. Gill. Acidosis in Cattle: A Review. 1998. J. Anim. Sci. 76: 275-286. https://doi.org/10.2527/1998.761275x
  26. Russell. J. B. 2002. Rumen Microbiology and Its Role in Ruminant Nutrition. Cornell University, Ithaca, NY, USA.
  27. Russell, J. B., J. D. O'connor, D. G. Fox, P. J. Van Soest, and C. J. Sniffen. 1992. A Net Carbohydrate and Protein System for Evaluating Cattle Diets: I. Ruminal Fermentation. J. Anim. Sci. 70: 3551-3561. https://doi.org/10.2527/1992.70113551x
  28. Shabi, Z., I. Bruckental, S. Zamwell, H. Tagari, and A. Arieli. 1999. Effects of Extrusion of Grain and Feeding Frequency on Rumen Fermentation, Nutrient Digestibility, and Milk Yield and Composition in Dairy Cows. J. Dairy Sci. 82: 1252-1260. https://doi.org/10.3168/jds.S0022-0302(99)75348-8
  29. Shih, C. H., T. T. Lee, W. H. J. Kuo, and B. Yu. 2014. Growth Performance and Intestinal Microflora Population of Broilers Fed Aged Brown Rice. J. Ann. Anim. Sci. 14: 897-909.
  30. Statistics korea. 2016. Livestock Production Cost Survey Report in 2015.
  31. Statistics korea. 2017a. Food Grain Consumption Survey Report in 2016.
  32. Statistics korea. 2017b. Rice Production(Brown rice).
  33. Statistics korea. 2018. Mixed Feed Production and Raw Material Use Performance.
  34. Svihus, B., A. K. Uhlen, and O. M. Harstad. 2005. Effect of Starch Granule Structure, Associated Components and Processing on Nutritive Value of Cereal Starch: A Review. J. Anim. Feed Sci. Technol. 122: 303-320. https://doi.org/10.1016/j.anifeedsci.2005.02.025
  35. Tagari, H., F. Pena, and L. D. Satter. 1986. Protein Degradation by Rumen Microbes of Heat-treated Whole Cottonseed. J. Anim. Sci. 62: 1732-1736. https://doi.org/10.2527/jas1986.6261732x
  36. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 74: 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  37. Yu, P., J. T. Hubber, F. A. P. Santons, J. M. Simas, and C. B. Theurer. 1998. Effects of Ground, Steam-flaked, and Steam-rolled Corn Grains on Performance of Lactating Cows. J. Dairy Sci. 81: 777-783. https://doi.org/10.3168/jds.S0022-0302(98)75634-6
  38. Zhou, Z., K. Robards, S. Helliwell, and C. Blanchard. 2002. Composition and Functional Properties of Rice. Int. J. Food Sci. Technol. 37: 849-868. https://doi.org/10.1046/j.1365-2621.2002.00625.x