DOI QR코드

DOI QR Code

Effects of Flavonoid-rich Plant Extracts on In vitro Ruminal Methanogenesis, Microbial Populations and Fermentation Characteristics

  • Kim, Eun T. (National Institute of Animal Science, RDA) ;
  • Guan, Le Luo (Department of Agricultural, Food and Nutritional Science, University of Alberta) ;
  • Lee, Shin J. (Division of Applied Life Science (BK21+, IALS), Gyeongsang National University) ;
  • Lee, Sang M. (National Institute of Animal Science, RDA) ;
  • Lee, Sang S. (Department of Animal Science and Technology, Sunchon National Uuniversity) ;
  • Lee, Il D. (Division of Applied Life Science (BK21+, IALS), Gyeongsang National University) ;
  • Lee, Su K. (Division of Applied Life Science (BK21+, IALS), Gyeongsang National University) ;
  • Lee, Sung S. (Division of Applied Life Science (BK21+, IALS), Gyeongsang National University)
  • Received : 2014.09.06
  • Accepted : 2014.11.04
  • Published : 2015.04.01

Abstract

The objective of this study was to evaluate the in vitro effects of flavonoid-rich plant extracts (PE) on ruminal fermentation characteristics and methane emission by studying their effectiveness for methanogenesis in the rumen. A fistulated Holstein cow was used as a donor of rumen fluid. The PE (Punica granatum, Betula schmidtii, Ginkgo biloba, Camellia japonica, and Cudrania tricuspidata) known to have high concentrations of flavonoid were added to an in vitro fermentation incubated with rumen fluid. Total gas production and microbial growth with all PE was higher than that of the control at 24 h incubation, while the methane emission was significantly lower (p<0.05) than that of the control. The decrease in methane accumulation relative to the control was 47.6%, 39.6%, 46.7%, 47.9%, and 48.8% for Punica, Betula, Ginkgo, Camellia, and Cudrania treatments, respectively. Ciliate populations were reduced by more than 60% in flavonoid-rich PE treatments. The Fibrobacter succinogenes diversity in all added flavonoid-rich PE was shown to increase, while the Ruminoccocus albus and R. flavefaciens populations in all PE decreased as compared with the control. In particular, the F. succinogenes community with the addition of Birch extract increased to a greater extent than that of others. In conclusion, the results of this study showed that flavonoid-rich PE decreased ruminal methane emission without adversely affecting ruminal fermentation characteristics in vitro in 24 h incubation time, suggesting that the flavonoid-rich PE have potential possibility as bio-active regulator for ruminants.

Keywords

References

  1. Baker, S. K. 1999. Rumen methanogens, and inhibition of methanogenesis. Aust. J. Agric. Res. 50:1293-1298. https://doi.org/10.1071/AR99005
  2. Balcells, J., A. Aris, A. Serrano, A. R. Seradj, J. Crespo, and M. Devant. 2012. Effects of an extract of plant flavonoids (Bioflavex) on rumen fermentation and performance in heifers fed high-concentrate diets. J. Anim. Sci. 90:4975-4984. https://doi.org/10.2527/jas.2011-4955
  3. Becker, P. M., P. G. Van Wikselaar, M. C. R. Franssen, R. C. H. De Vos, R. D. Hall, and J. Beekwilder. 2014. Evidence for a hydrogen-sink mechanism of (+) catechin-mediated emission reduction of the ruminant greenhouse gas methane. Metabolomics 10:179-189. https://doi.org/10.1007/s11306-013-0554-5
  4. Benchaar, C., H. V. Petit, R. Berthiaume, D. R. Ouellet, J. Chiquette, and P. Y. Chouinard. 2007. Effects of essential oils on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition in dairy cows fed alfalfa silage or corn silage. J. Dairy Sci. 90:886-897. https://doi.org/10.3168/jds.S0022-0302(07)71572-2
  5. Bhatta, R., Y. Uyeno, K. Tajima, A. Takenaka, Y. Yabumoto, I. Nonaka, O. Enishi, and M. Kurihara. 2009. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 92:5512-5522. https://doi.org/10.3168/jds.2008-1441
  6. Bodas, R., S. Lopez, M. Fernandez, R. Garcia-Gonzalez, A. B. Rodriguez, R. J. Wallace, and J. S. Gonzalez. 2008. In vitro screening of the potential of numerous plant species as antimethanogenic feed additives for ruminants. Anim. Feed Sci. Technol. 145:245-258. https://doi.org/10.1016/j.anifeedsci.2007.04.015
  7. Cushnie, T. P. T. and A. J. Lamb. 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26:343-356. https://doi.org/10.1016/j.ijantimicag.2005.09.002
  8. Denman, S. E. and C. S. McSweeney. 2005. Quantitative (realtime) PCR. In Methods in Gut Microbial Ecology for Ruminants (Eds. H. P. S. Makkar and C. S. McSweeney). Springer, Dordrecht, The Netherlands. pp. 105-115.
  9. Denman, S. E. and C. S. McSweeney. 2006. Development of a Real-Time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS. Microbiol. Ecol. 58:572-582. https://doi.org/10.1111/j.1574-6941.2006.00190.x
  10. Denman, S. E., N. W. Tomkins, and C. S. McSweeney. 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 62:313-322. https://doi.org/10.1111/j.1574-6941.2007.00394.x
  11. Dohme, F., A. Machmuller, A. Wasserfallen, and M. Kreuzer. 2001. Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets. Lett. Appl. Microbiol. 32:47-51. https://doi.org/10.1046/j.1472-765x.2001.00863.x
  12. Ellis, J. L., E. Kebreab, N. E. Odongo, B. W. McBride, E. K. Okine, and J. France. 2007. Prediction of methane production from dairy and beef cattle. J. Dairy Sci. 90:3456-3467. https://doi.org/10.3168/jds.2006-675
  13. Jia, Z., M. Tang, and J. Wu. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64:555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  14. Johnson, K. A. and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492. https://doi.org/10.2527/1995.7382483x
  15. Koike, S. and Y. Kobayashi. 2001. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Ecol. 204:361-366. https://doi.org/10.1111/j.1574-6968.2001.tb10911.x
  16. Latham, M. J. and M. J. Wolin. 1977. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl. Environ. Microbiol. 34:297-301.
  17. McDougall, E. I. 1948. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem. J. 43:99-109. https://doi.org/10.1042/bj0430099
  18. Ntaikou, I., H. N. Gavala, M. Kornaros, and G. Lyberatos. 2008. Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus. Int. J. Hydrogen. Energy 33:1153-1163. https://doi.org/10.1016/j.ijhydene.2007.10.053
  19. Oskoueian, E., N. Abdullah, and A. Oskoueian. 2013. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. Biomed Res. Int. Article ID 349129, 8 pages. Doi:10.1155/2013/349129.
  20. Patra, A. K., D. N. Kamra, and N. Agarwa. 2006. Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Anim. Feed Sci. Technol. 128:276-291. https://doi.org/10.1016/j.anifeedsci.2005.11.001
  21. Patra, A. K. and J. Saxena. 2010. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 71:1198-1222. https://doi.org/10.1016/j.phytochem.2010.05.010
  22. Pen, B., C. Sar, B. Mwenya, K. Kuwaki, R. Morikawa, and J. Takahashi. 2006. Effects of Yucca schidigera and Quillaja saponaria extracts on in vitro ruminal fermentation and methane emission. Anim. Feed Sci. Technol. 129:175-186. https://doi.org/10.1016/j.anifeedsci.2006.01.002
  23. SAS Institute. 2002. SAS User's Guide. SAS Institute Inc., Cary, NC, USA.
  24. Skillman, L. C., P. N. Evans, C. Strompl, and K. N. Joblin. 2006. 16S rDNA directed PCR primers and detection of methanogens in the bovine rumen. Lett. Appl. Microbiol. 42:222-228. https://doi.org/10.1111/j.1472-765X.2005.01833.x
  25. Skillman, L. C., A. F. Toovey, A. J. Williams, and A. G. Wright. 2006. Development and validation of a real-time PCR method to quantify rumen protozoa and examination of variability between Entodinium populations in sheep offered a hay-based diet. Appl. Environ. Microbiol. 72:200-206. https://doi.org/10.1128/AEM.72.1.200-206.2006
  26. Tedesco, D., A. Tava, S. Galletti, M. Tameni, G. Varisco, A. Costa, and S. Steidler. 2004. Effects of silymarin, a natural hepatoprotector, in periparturient dairy cows. J. Dairy Sci. 87:2239-2247. https://doi.org/10.3168/jds.S0022-0302(04)70044-2
  27. Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan, and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48:185-197. https://doi.org/10.1016/0377-8401(94)90171-6
  28. Velioglu, Y. S., G. Mazza, L. Cao, and B. D. Oomah. 1998. Antioxidant activity and total phenolics in selected fruit, vegetables, and grain products. J. Agric. Food Chem. 46:4113-4117. https://doi.org/10.1021/jf9801973
  29. Zhou, Z., Q. Meng, and Z. Yu. 2011. Effects of methanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in in vitro ruminal cultures. Appl. Environ. Microbiol. 77:2634-2639. https://doi.org/10.1128/AEM.02779-10

Cited by

  1. Use of Asian selected agricultural byproducts to modulate rumen microbes and fermentation vol.7, pp.1, 2016, https://doi.org/10.1186/s40104-016-0126-4
  2. Effects of alfalfa flavonoids on the production performance, immune system, and ruminal fermentation of dairy cows vol.30, pp.10, 2017, https://doi.org/10.5713/ajas.16.0579
  3. Effects of alfalfa flavonoids extract on the microbial flora of dairy cow rumen vol.30, pp.9, 2017, https://doi.org/10.5713/ajas.16.0839
  4. Effects of dietary Kleinhovia hospita and Leucaena leucocephala leaves on rumen fermentation and microbial population in goats fed treated rice straw vol.49, pp.8, 2017, https://doi.org/10.1007/s11250-017-1388-3
  5. Scrophularia striata Extract Supports Rumen Fermentation and Improves Microbial Diversity in vitro Compared to Monensin vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.02164
  6. Effect of Rhodophyta extracts on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations vol.31, pp.1, 2018, https://doi.org/10.5713/ajas.17.0620
  7. Effects of Gelidium amansii extracts on in vitro ruminal fermentation characteristics, methanogenesis, and microbial populations vol.31, pp.1, 2018, https://doi.org/10.5713/ajas.17.0619
  8. Investigation in terms of digestive values, silages quality and nutrient content of the using pomegranate pomace in the ensiling of apple pomace with high moisture contents vol.46, pp.1, 2018, https://doi.org/10.1080/09712119.2018.1490300
  9. 반추동물의 메탄감소를 위한 천연식물 추출물에 관한 연구 vol.25, pp.4, 2015, https://doi.org/10.11625/kjoa.2017.25.4.901
  10. Comparison of in vitro ruminal fermentation incubated with different levels of Korean corn grains with total mixed ration as a basal vol.45, pp.3, 2015, https://doi.org/10.7744/kjoas.20180026
  11. Effects of Supplementation of Piper sarmentosum Leaf Powder on Feed Efficiency, Rumen Ecology and Rumen Protozoal Concentration in Thai Native Beef Cattle vol.9, pp.4, 2019, https://doi.org/10.3390/ani9040130
  12. Effect of Punica granatum and Tecomella undulata supplementation on nutrient utilization, enteric methane emission and growth performance of Murrah male buffaloes vol.28, pp.2, 2015, https://doi.org/10.22358/jafs/109237/2019
  13. Potential of walnut (Juglans regia) leave ethanolic extract to modify ruminal fermentation, microbial populations and mitigate methane emission vol.60, pp.9, 2015, https://doi.org/10.1071/an19241
  14. Effects of Allium mongolicum Regel supplementation on the digestibility, methane production, and antioxidant capacity of Simmental calves in northwest China vol.91, pp.1, 2020, https://doi.org/10.1111/asj.13392
  15. Gas Production, Digestibility and Efficacy of Stored or Fresh Plant Extracts to Reduce Methane Production on Different Substrates vol.10, pp.1, 2020, https://doi.org/10.3390/ani10010146
  16. Role of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants vol.7, pp.None, 2020, https://doi.org/10.3389/fvets.2020.00584
  17. Effect of Biological Extract Supplementation on Milk Yield and Rumen Fermentation in Dairy Cows vol.15, pp.2, 2015, https://doi.org/10.3923/ijds.2020.88.98
  18. Giant milkweed (Calotropis gigantea): A new plant resource to inhibit protozoa and decrease ammoniagenesis of rumen microbiota in vitro without impairing fermentation vol.743, pp.None, 2020, https://doi.org/10.1016/j.scitotenv.2020.140665
  19. Changes in vitro rumen fermentation, methane production and microbial populations in response to green tea extract vol.20, pp.1, 2015, https://doi.org/10.1080/1828051x.2021.1938715
  20. 왕대의 첨가수준이 반추위 in vitro 발효성상과 메탄 발생량에 미치는 영향 vol.29, pp.2, 2021, https://doi.org/10.11625/kjoa.2021.29.2.241
  21. Effect of Chitosan and Naringin on Enteric Methane Emissions in Crossbred Heifers Fed Tropical Grass vol.11, pp.6, 2015, https://doi.org/10.3390/ani11061599
  22. In Vitro Fermentation Characteristics and Methane Mitigation Responded to Flavonoid Extract Levels from Alternanthera sissoo and Dietary Ratios vol.7, pp.3, 2015, https://doi.org/10.3390/fermentation7030109
  23. The effects of phytochemicals on methanogenesis: insights from ruminant digestion and implications for industrial biogas digesters management vol.20, pp.6, 2015, https://doi.org/10.1007/s11101-021-09744-6