• Title/Summary/Keyword: In vitro degradation

Search Result 347, Processing Time 0.035 seconds

Effects of Activated Carbon and Charcoal on in vitro Nutrient Disappearances and Ruminal Fermentation Characteristics (고농후사료에 대한 목탄 및 활성탄의 첨가 수준이 인공위내 소화율, 휘발성 지방산 및 개스 생산량에 미치는 영향)

  • Lee, Soo-Kee;Cha, Sang-Woo;Kim, Sun-Kyun
    • Korean Journal of Agricultural Science
    • /
    • v.29 no.2
    • /
    • pp.35-42
    • /
    • 2002
  • This study was conducted to investigate the effects of the addition of activated charcoal (AC) and oak charcoal on in vitro ruminal fermentation characteristics, nutrient disappearance, and ruminal gas production. AC and oak charcoal were added at the levels of 0.50, and 1.00 % to experimental diet (roughage/concentrate ratio ; 2/8). Ruminal pH and ammonia-N tended to increase by adding AC(P<0.05). But oak charcoal did not affect the ruminal pH and ammonia-N. Although not significant, ruminal total VFA and molar percentage of butyric acid tended to decrease in AC diets. but molar percentage of acetate and propionate were not affected by adding AC. Ruminal degradation of dry matter, crude protein, NDF, and ADF in AC diets tended to increase than in non-AC diet, however, no tendency in ruminal degradation of hemicellulose was observed. Ruminal gas production tended to increase in the AC and oak charcoal diets(P<0.05). Although there appeared some beneficial effects in adding AC to ruminant diets in this study, more works should be done with AC before we can make clear conclusion on the use of AC in the ruminant diets.

  • PDF

Transmucosal Delivery of Luteinizing Hormone-Releasing Hormone: Effect of Medium Chain Fatty Acid Salts on Stabilization of LHRH in Mucosal Homogenates in vitro. (황체호르몬 유리호르몬의 경점막 수송: 가토 점막균질액 중에서 중쇄지방산염의 LHRH에 대한 안정화 효과)

  • Han, Kun;Park, Jeong-Sook
    • YAKHAK HOEJI
    • /
    • v.38 no.1
    • /
    • pp.67-77
    • /
    • 1994
  • In order to investigate the feasibility of transmucosal delivery of the model peptide, LHRH, metabolism of LHRH and inhibition effect of medium chain fatty acid salts were studied in rabbit mucosal homogenate. LHRH incubated in homogenates of rectal(RE), nasal(NA) and vaginal(VA) mucosa were assayed by HPLC. Five to six degradation products of LHRH were deterted and the degradation of LHRH$(500\;{\mu}g/ml)$ followed the first order kinetics. The main degradation products were found as $LHRH^{1-5}(M-I)$, $LHRH^{1-3}(M-II)$ and $LHRH^{1-6}(M-III)$ by the method of amino acid analysis. The half-lives of LHRH in the mucosal homogenates were found to be less than 20 min at protein concentration of 2.5 mg/ml with the order of VA>NA>RE mucosal homogenate. Medium chain fatty acid salts such as sodium caprylate $(C_8)$, sodium caprate $(C_{10})$ and sodium laurate $(C_{12})$ at the concentration of $0.5%{\sim}1.0%$ inhibit the proteolysis of LHRH significantly. The addition of sodium laurate(0.5%) into the NA and VA mucosal homogenates protected LHRH completely from the degradation.

  • PDF

Effect of Aralia Cordata Pharmacopuncture on Cartilage Protection and Apoptosis Inhibition In Vitro and in Collagenased-induced Arthritis Rabbit Model

  • Park, Dong-Suk;Baek, Yong-Hyeon
    • The Journal of Korean Medicine
    • /
    • v.28 no.4
    • /
    • pp.114-123
    • /
    • 2007
  • Osteoarthritis is characterized by cartilage degradation and chondrocytes death. Chondrocyte death is induced by the apotosis through special mechanisms including the activation of caspase-3. On the basis of this background, this study was designed to examine the cartilage protective and anti-apototic effects of Aralia Cordata in in vtro and in collagenase-induced arthritis rabbit model. To conduct in vitro study, chondrocytes culturedfrom rabbit knee joint were treated by 5 ng/ml IL-1a.For in vivo experiment, collagenase-induced arthritis (CIA) rabbit model was made via intraarticular injection with 0.25 ml of collagenase solution. Aralia cordata pharmacopuncture (ACP) was administrated on bilateral Dokbi acupoint (ST35) of rabbits at a dosage of 150 ${\mu}g/kg$ once a day for 28 days after the initiation of the CIA induction. In the study by using CIA rabbit model in vivo, ACP showed the inhibition of cartilage degradation in histological analysis. Aralia cordata also showed anti-apoptotic effect both in vitro and in vivo study. In chondrocytes treated by IL-1a, Aralia cordata inhibited caspase-3 activity and enhanced the proliferation of IL-1a-induced dedifferentiated chondrocytes. ACP showed the inhibition effect on the caspase-3 expression and activity from CIA rabbit model. This study indicates that ACP inhibits the cartilage destruction and the chondrocyte apotosis through downregulation of caspase-3 activity. These data suggest that ACP has a beneficial effect on preventing articular cartilage destruction in osteoarthrtis.

  • PDF

Biological Affinity and Biodegradability of Poly(propylene carbonate) Prepared from Copolymerization of Carbon Dioxide with Propylene Oxide

  • Kim, Ga-Hee;Ree, Moon-Hor;Kim, Hee-Soo;Kim, Ik-Jung;Kim, Jung-Ran;Lee, Jong-Im
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.473-480
    • /
    • 2008
  • In this study we investigated bacterial and cell adhesion to poly(propylene carbonate) (PPC) films, that had been synthesized by the copolymerization of carbon dioxide (a global warming chemical) with propylene oxide. We also assessed the biocompatibility and biodegradability of the films in vivo, and their oxidative degradation in vitro. The bacteria adhered to the smooth, hydrophobic PPC surface after 4 h incubation. Pseudomonas aeruginosa and Enterococcus faecalis had the highest levels of adhesion, Escherichia coli and Staphylococcus aureus had the lowest levels, and Staphylococcus epidermidis was intermediate. In contrast, there was no adhesion of human cells (cell line HEp-2) to the PPC films, due to the hydrophobicity and dimensional instability of the surface. On the other hand, the PPC films exhibited good biocompatibility in the mouse subcutaneous environment. Moreover, contrary to expectation the PPC films degraded in the mouse subcutaneous environment. This is the first experimental confirmation that PPC can undergo surface erosion biodegradation in vivo. The observed biodegradability of PPC may have resulted from enzymatic hydrolysis and oxidative degradation processes. In contrast, the PPC films showed resistance to oxidative degradation in vitro. Overall, PPC revealed high affinity to bioorganisms and also good bio-degradability.

Ginsenoside 20(S)-Rg3 reduces KIF20A expression and promotes CDC25A proteasomal degradation in epithelial ovarian cancer

  • Rong Zhang;Lei Li;Huihui Li;Hansong Bai;Yuping Suo;Ju Cui;Yingmei Wang
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.40-51
    • /
    • 2024
  • Background: Ginsenoside 20(S)-Rg3 shows promising tumor-suppressive effects in ovarian cancer via inhibiting NF-kB signaling. This study aimed to explore the downstream tumor suppressive mechanisms of ginsenoside Rg3 via this signaling pathway. Materials and methods: A systematical screening was applied to examine the expression profile of 41 kinesin family member genes in ovarian cancer. The regulatory effect of ginsenoside Rg3 on KIF20A expression was studied. In addition, we explored interacting proteins of KIF20A and their molecular regulations in ovarian cancer. RNA-seq data from The Cancer Genome Atlas (TCGA) was used for bioinformatic analysis. Epithelial ovarian cancer cell lines SKOV3 and A2780 were used as in vitro and in vivo cell models. Commercial human ovarian cancer tissue arrays were used for immunohistochemistry staining. Results: KIF20A is a biomarker of poor prognosis among the kinesin genes. It promotes ovarian cancer cell growth in vitro and in vivo. Ginsenoside Rg3 can suppress the transcription of KIF20A. GST pull-down and co-immunoprecipitation (IP) assays confirmed that KIF20A physically interacts with BTRC (β-TrCP1), a substrate recognition subunit for SCFβ-TrCP E3 ubiquitin ligase. In vitro ubiquitination and cycloheximide (CHX) chase assays showed that via interacting with BTRC, KIF20A reduces BTRC-mediated CDC25A poly-ubiquitination and enhances its stability. Ginsenoside Rg3 treatment partly abrogates KIF20A overexpression-induced CDC25A upregulation. Conclusion: This study revealed a novel anti-tumor mechanism of ginsenoside Rg3. It can inhibit KIF20A transcription and promote CDC25A proteasomal degradation in epithelial ovarian cancer.

Relative Palatability to Sheep of Some Browse Species, their In sacco Degradability and In vitro Gas Production Characteristics

  • Abdulrazak, S.A.;Nyangaga, J.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1580-1584
    • /
    • 2001
  • A study was conducted to estimate the nutritive value of some selected acacia forages using palatability index, in sacco degradability and in vitro gas production characteristics. Ten wethers (mean wt. $18{\pm}3.5kg$) were offered Acacia tortilis, Acacia nilotica, Acacia mellifera, Acacia brevispica, Acacia Senegal and Leucaena leucocephala (control) using a cafeteria system to determine the species preference by the animals. The acacia species were rich in nitrogen and showed variable palatability pattern. Significant (p<0.05) differences in relative palatability index (RPI) were detected among the species with the following ranking: brevispica > leucaena > mellifera > tortilis > Senegal > nilotica. Acacia nilotica appeared to be of low relative palatability with RPI of 24% and this was attributed to relatively high phenolic concentrations. The DM potential degradability (B) and rate of degradation (c) of the species were significantly (p<0.05) different, ranging from 40.1 to 59.1% and 0.0285 to 0.0794/h respectively. Acacia species had moderate levels of rumen undegradable protein, much higher than that in leucaena. In vitro gas production results indicated the effect of polyphenolic compounds on the fermentation rate, with lower gas production recorded from A. nilotica and tortilis. Based on RPI, A. brevispica and mellifera were superior to the rest and comparable to L. leucocephala. Long-term feeding trials are required with the superior species when used as protein supplements to poor quality diets.

Effects of Mixtures of Tween80 and Cellulolytic Enzymes on Nutrient Digestion and Cellulolytic Bacterial Adhesion

  • Hwang, Il Hwan;Lee, Chan Hee;Kim, Seon Woo;Sung, Ha Guyn;Lee, Se Young;Lee, Sung Sill;Hong, Hee Ok;Kwak, Yong-Chul;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1604-1609
    • /
    • 2008
  • A series of in vitro and in vivo experiments were conducted to investigate the effects of the mixture of Tween 80 and cellulolytic enzymes (xylanase and cellulase) on total tract nutrient digestibility and rumen cellulolytic bacterial adhesion rates in Holstein steers. Ground timothy hay sprayed with various levels of Tween 80 and cellulolytic enzymes was used as substrates in an in vitro experiment to find out the best combinations for DM degradation. The application level of 2.5% (v/w) Tween 80 and the combination of 5 U xylanase and 2.5 U cellulase per gram of ground timothy hay (DM basis) resulted in the highest in vitro dry matter degradation rate (p<0.05). Feeding the same timothy hay to Holstein steers also improved in vivo nutrient (DM, CP, CF, NDF and ADF) digesibilities compared to non-treated hay (p<0.05). Moreover, Tween 80 and enzyme combination treatment increased total ruminal VFA and concentrations of propionic acid and isovaleric acid with decreased acetate to propionate ratio (p<0.001). However, adhesion rates of Fibrobacter succinogenes and Ruminococcus flavefaciens determined by Real Time PCR were not influenced by the treatment while that of Ruminococcus albus was decreased (p<0.05). The present results indicate that a mixture of Tween 80 and cellulolytic enzymes can improve rumen environment and feed digestibility with variable influence on cellulolytic bacterial adhesion on feed.

Synthesis and Characterization of Biodegradable Elastic Hydrogels Based on Poly(ethylene glycol) and Poly(${\varepsilon}-caprolactone$) Blocks

  • Im, Su-Jin;Choi, You-Mee;Subramanyam, Elango;Huh, Kang-Moo;Park, Ki-Nam
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.363-369
    • /
    • 2007
  • Novel biodegradable elastic hydrogels, based on hydrophilic and hydrophobic polymer blocks, were synthesized via the radical crosslinking reaction of diacrylates of poly(ethylene glycol) (PEG) and poly(${\varepsilon}-caprolactone$) (PCL). PEG and PCL diols were diacrylated with acryloyl chloride in the presence of triethylamine, with the reaction confirmed by FT-IR and $^1H-NMR$ measurements. The diacrylate polymers were used as building-blocks for the syntheses of a series of hydro gels, with different block compositions, by simply varying the feed ratios and molecular weights of the block components. The swelling ratio of the hydrogels was controlled by the balance between the hydrophilic and hydrophobic polymer blocks. Usually, the swelling ratio increases with increasing PEG content and decreasing block length within the network structure. The hydrogels exhibited negative thermo-sensitive swelling behavior due to the coexistence of hydrophilic and hydrophobic polymer components in their network structure, and such thermo-responsive swelling/deswelling behavior could be repeated using a temperature cycle, without any significant change in the swelling ratio. In vitro degradation tests showed that degradation occurred over a 3 to 8 month period. Due to their biodegradability, biocompatibility, elasticity and functionality, these hydrogels could be utilized in various biomedical applications, such as tissue engineering and drug delivery systems.

Synthesis and Characterization of Biodegradable Thermo- and pH-Sensitive Hydrogels Based on Pluronic F127/Poly($\varepsilon$-caprolactone) Macromer and Acrylic Acid

  • Zhao, Sanping;Cao, Mengjie;Wu, Jun;Xu, Weilin
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.1025-1031
    • /
    • 2009
  • Several kinds of biodegradable hydrogels were prepared via in situ photopolymerization of Pluronic F127/poly($\varepsilon$-caprolactone) macromer and acrylic acid (AA) comonomer in aqueous medium. The swelling kinetics measurements showed that the resultant hydrogels exhibited both thermo- and pH-sensitive behaviors, and that this stimuli-responsiveness underwent a fast reversible process. With increasing pH of the local buffer solutions, the pH sensitivity of the hydrogels was increased, while the temperature sensitivity was decreased. In vitro hydrolytic degradation in the buffer solution (pH 7.4, $37^{\circ}C$), the degradation rate of the hydrogels was greatly improved due to the introduction of the AA comonomer. The in vitro release profiles of bovine serum albumin (BSA) in-situ embedded into the hydrogels were also investigated: the release mechanism of BSA based on the Peppas equation was followed Case II diffusion. Such biodegradable dual-sensitive hydrogel materials may have more advantages as a potentially interesting platform for smart drug delivery carriers and tissue engineering scaffolds.

Preparation of Electrospun Oxidized Cellulose Mats and Their in vitro Degradation Behavior

  • Khil Myung Seob;Kim Hak Yong;Kang Young Sic;Bang Ho Ju;Lee Douk Rae;Doo Jae Kyun
    • Macromolecular Research
    • /
    • v.13 no.1
    • /
    • pp.62-67
    • /
    • 2005
  • This paper investigated the effect of biodegradation behavior on the oxidation of cellulose nanofiber mats. The cellulose mats were produced through electro spinning. The diameter of an electrospun fiber varied from 90 to 240 nm depending on the electrospinning parameters, such as the solution concentration, needle diameter, and rotation speed of a grounded collector. Oxidized cellulose (OC).mats containing different carboxyl contents were prepared using $NO_2$ as an oxidant. The total carboxyl content of the cellulose nanofiber mats obtained after oxidation for 20 h was $20.6\%$. The corresponding carboxyl content was important from a commercial point of view because OC containing $16-24\%$ carboxyl content are used widely in the medical field as a form of powder or knitted fabric. Degradation tests of the OC mats were performed at $37^{\circ}C$ in phosphate-buffered saline (pH 7.4). Microscopy techniques were introduced to study the morphological properties and the degradation behavior of the OC mats. Morphological changes of the mats were visualized using optical microscopy. Within 4 days of exposure to PBS, the weight loss of the OC mats was $>90\%$.