Biological Affinity and Biodegradability of Poly(propylene carbonate) Prepared from Copolymerization of Carbon Dioxide with Propylene Oxide

  • Kim, Ga-Hee (Department of Chemistry, National Research Lab for Polymer Synthesis & Physics, Center for Integrated Molecular Systems, Polymer Research Institute, and BK School of Molecular Science, Pohang University of Science and Technology) ;
  • Ree, Moon-Hor (Department of Chemistry, National Research Lab for Polymer Synthesis & Physics, Center for Integrated Molecular Systems, Polymer Research Institute, and BK School of Molecular Science, Pohang University of Science and Technology) ;
  • Kim, Hee-Soo (Department of Microbiology and Dongguk Medial Institute, Dongguk University College of Medicine) ;
  • Kim, Ik-Jung (Department of Microbiology and Dongguk Medial Institute, Dongguk University College of Medicine) ;
  • Kim, Jung-Ran (Department of Pathology and Dongguk Medial Institute, Dongguk University College of Medicine) ;
  • Lee, Jong-Im (Department of Pathology and Dongguk Medial Institute, Dongguk University College of Medicine)
  • Published : 2008.07.31

Abstract

In this study we investigated bacterial and cell adhesion to poly(propylene carbonate) (PPC) films, that had been synthesized by the copolymerization of carbon dioxide (a global warming chemical) with propylene oxide. We also assessed the biocompatibility and biodegradability of the films in vivo, and their oxidative degradation in vitro. The bacteria adhered to the smooth, hydrophobic PPC surface after 4 h incubation. Pseudomonas aeruginosa and Enterococcus faecalis had the highest levels of adhesion, Escherichia coli and Staphylococcus aureus had the lowest levels, and Staphylococcus epidermidis was intermediate. In contrast, there was no adhesion of human cells (cell line HEp-2) to the PPC films, due to the hydrophobicity and dimensional instability of the surface. On the other hand, the PPC films exhibited good biocompatibility in the mouse subcutaneous environment. Moreover, contrary to expectation the PPC films degraded in the mouse subcutaneous environment. This is the first experimental confirmation that PPC can undergo surface erosion biodegradation in vivo. The observed biodegradability of PPC may have resulted from enzymatic hydrolysis and oxidative degradation processes. In contrast, the PPC films showed resistance to oxidative degradation in vitro. Overall, PPC revealed high affinity to bioorganisms and also good bio-degradability.

Keywords

References

  1. J. Paul and C. M. Pradier, Editors, Carbon Dioxide Chemistry: Environmental Issues, Royal Soc. Chem., Cambridge, 1994
  2. J. H. Jung, M. Ree, and T. Chang, J. Polym. Sci. Part A: Polym. Chem., 37, 3329 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990815)37:16<3329::AID-POLA31>3.0.CO;2-Q
  3. J. S. Kim, H. Kim, and M. Ree, Chem. Mater., 16, 2981 (2004) https://doi.org/10.1021/cm035358j
  4. S. Inoue, H. Koinuma, and T. Tsuruta, Makromol. Chem., 130, 210 (1969) https://doi.org/10.1002/macp.1969.021300112
  5. K. Soga, E. Imai, and I. Hattori, Polymer J., 13, 407 (1981) https://doi.org/10.1295/polymj.13.407
  6. D. J. Darensbourg, J. R. Wildeson, J. C. Yarbrough, and J. H. Reibenspies, J. Am. Chem. Soc., 122, 12487 (2000) https://doi.org/10.1021/ja002855h
  7. M. Super, E. Berluche, C. Costello, and E. Beckman, Macromolecules, 30, 368 (1997) https://doi.org/10.1021/ma960755j
  8. C. S. Tan and T. J. Hsu, Macromolecules, 30, 3147 (1997) https://doi.org/10.1021/ma961725j
  9. M. Cheng, E. B. Lobkovsky, and G. W. Coates, J. Am. Chem. Soc., 120, 11018 (1998)
  10. M. Ree, J. Y. Bae, J. H. Jung, and T. J. Shin, Korea Polym. J., 7, 333 (1999)
  11. M. Ree, J. Y. Bae, J. H. Jung, T. J. Shin, Y. T. Hwang, and T. Chang, Polym. Eng. Sci., 40, 1542 (2000) https://doi.org/10.1002/pen.11284
  12. J. S. Kim, M. Ree, T. J. Shin, O. H. Han, S. J. Cho, Y. T. Hwang, J. Y. Bae, J. M. Lee, R. Ryoo, and H. Kim, J. Catalysis, 218, 209 (2003) https://doi.org/10.1016/S0021-9517(03)00082-4
  13. J. S. Kim, M. Ree, S. W. Lee, W. Oh, S. Baek, B. Lee, T. J. Shin, K. J. Kim, B. Kim, and J. Luning, J. Catalysis, 218, 386 (2003) https://doi.org/10.1016/S0021-9517(03)00122-2
  14. M. Ree, J. Y. Bae, J. H. Jung, and T. J. Shin, J. Polym. Sci. Part A: Polym. Chem., 37, 1863 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990615)37:12<1863::AID-POLA16>3.0.CO;2-K
  15. Y. T. Hwang, H. Kim, and M. Ree, Macromol. Symp., 224, 227 (2005)
  16. M. Ree, J. Y. Bae, J. H. Jung, T. J. Shin, Y. T. Hwang, and T. Chang, Polym. Eng. Sci., 40, 1542 (2000) https://doi.org/10.1002/pen.11284
  17. B. Lee, J. H. Jung, and M. Ree, Macromol. Chem. Phys., 201, 831 (2000) https://doi.org/10.1002/(SICI)1521-3935(20000501)201:8<831::AID-MACP831>3.0.CO;2-5
  18. Y. Hwang, J. Jung, M. Ree, and H. Kim, Macromolecules, 36, 8210 (2003) https://doi.org/10.1021/ma034498b
  19. I. Arvanitoyannis, Rev. Macromol. Chem. Phys., C39, 205 (1999)
  20. G. Scott and D. Gilead, Degradable Polymer, Chapman Hall, London, 1995
  21. Y. Hwang, M. Ree, and H. Kim, Catalysis Today, 115, 288 (2006) https://doi.org/10.1016/j.cattod.2006.02.061
  22. A. J. Kinloch, Adhesion and Adhesives: Science and Technology, Chapman Hall, New York, 1987, p 30
  23. D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 13, 1740 (1969)
  24. J. H. Chung, K. H. Park, B. M. Seo, E. S. Kim, J. R. Hong, I. H. Chung, N. Kang, B. M. Min, Y. H. Choung, T. Akaike, and P. H. Choung, J. Biomed. Mater. Res., 67A, 1055 (2003) https://doi.org/10.1002/jbm.a.10472
  25. J. Watanabe and K. Ishihara, Artif. Organs, 27, 242 (2003) https://doi.org/10.1046/j.1525-1594.2003.07015.x
  26. E. Imbert, A. A. Poot, C. G. Figdor, and J. Feijen, J. Biomed. Mater. Res., 56, 376 (2001) https://doi.org/10.1002/1097-4636(20010905)56:3<376::AID-JBM1106>3.0.CO;2-R
  27. F. E. Khadali, G. Helary, G. Pavon-Djavid, and V. Migonney, Biomacromolecules, 3, 51 (2002) https://doi.org/10.1021/bm015563x
  28. R. S. Labow, E. Meek, L. A. Matheson, and J. P. Santerre, Biomaterials, 23, 3936 (2002)
  29. E. Christenson, J. Anderson, and A. Hiltner, J. Biomed. Mater. Res., 70A, 245 (2004) https://doi.org/10.1002/jbm.a.30067
  30. W. G. Characklis and K. C. Marshall, Edtors, Biofilms, Wiley, New York, 1990
  31. M. Fletcher, Editor, Bacterial Adhesion: Molecular and Ecological Diversity, Wiley-Liss, New York, 1996
  32. B. Bendinger, H. H. M. Rijnaarts, K. Altendorf, and A. J. B. Zehnder, Appl. Environ. Microbiol., 59, 3973 (1993)
  33. M. Rosenber and S. Kjelleberg, Adv. Microbial Ecology, 9, 353 (1986)
  34. R. Bullitt and L. Makowski, Nature, 373, 164 (1995) https://doi.org/10.1038/373164a0
  35. G. M. Bruinsma, H. C. van der Mei, and H. J. Busscher, Biomaterials, 22, 3217 (2001) https://doi.org/10.1016/S0142-9612(01)00159-4
  36. H. C. van der Mei, B. van de Belt-Gritter, G. Reid, H. Bialkowska-Hobrzanska, and H. J. Busscher, Microbiology, 143, 3861 (1997) https://doi.org/10.1099/00221287-143-12-3861
  37. A. E. van Merode, H. C. van der Mei, H. J. Busscher, K. Waar, and B. P. Krom, Microbiology, 152, 807 (2006) https://doi.org/10.1099/mic.0.28460-0
  38. M. A. Hjortso, Cell adhesion: Fundamentals and Biotechnological Applications, Dekker, New York, 1995
  39. S. V. Fulzele, P. M. Satturwar, and A. K. Dorle, Eur. J. Pharm. Sci., 20, 53 (2003) https://doi.org/10.1016/S0928-0987(03)00168-4
  40. M. A. Schubert, M. J. Wiggins, M. P. Schaefer, A. Hiltner, and J. M. Anderson, J. Biomed. Mater. Res., 29, 337 (1995) https://doi.org/10.1002/jbm.820290309
  41. J. H. Jung, M. Ree, and H. Kim, Catalysis Today, 115, 283 (2006) https://doi.org/10.1016/j.cattod.2006.02.060