• Title/Summary/Keyword: In vitro cytotoxicity

Search Result 1,115, Processing Time 0.024 seconds

Protective Effect of Radiation-induced New Blackberry Mutant γ-B201 on H2O2-induced Oxidative Damage in HepG2 Cells (H2O2 에 의해 유도된 HepG2 세포의 산화적 스트레스에 대한 신품종 방사선 돌연변이 블랙베리 γ-B201의 세포 보호 효과)

  • Cho, Byoung Ok;Lee, Chang-Wook;So, Yangkang;Jin, Chang-Hyun;Yook, Hong-Sun;Byun, Myung-Woo;Jeong, Yong-Wook;Park, Jong Chun;Jeong, Il-Yun
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.384-389
    • /
    • 2014
  • The objective of the present study was to investigate the chemical composition of anthocyanin-enriched extract of radiation-induced blackberry (Rubus fruticosus L.) mutant (${\gamma}$-B201) as well as the protective effect of ${\gamma}$-B201 against oxidative stress in vitro. The cytotoxicity, reactive oxygen species (ROS) scavenging capacity, and DNA damage were assessed by WST-1 assay, flow cytometry, and comet assay, respectively. Lactate dehydrogenase, superoxide dismutase, and catalase activities were determined by using a commercial kit. The in vitro results showed that ${\gamma}$-B201 increased the cell viability, reduction of lactate dehydrogenase release, and intracellular ROS scavenging capacity in hydrogen peroxide ($H_2O_2$)-treated HepG2 cells. Furthermore, treatment with ${\gamma}$-B201 attenuated DNA damage in $H_2O_2$-treated HepG2 cells and treatment with ${\gamma}$-B201 restored the activity of superoxide dismutase and catalase in $H_2O_2$-treated HepG2 cells. In conclusion, the present study suggests that ${\gamma}$-B201 blackberry extract can exert a significant cytoprotective effect against $H_2O_2$-induced cell damage.

Cognitive-enhancing Effects of a Fermented Milk Product, LHFM on Scopolamine-induced Amnesia (발효유 산물인 LHFM의 인지기능 개선 효과)

  • Jeon, Yong-Jin;Kim, Jun-Hyeong;Lee, Myong-Jae;Jeon, Woo-Jin;Lee, Seung-Hun;Yeon, Seung-Woo;Kang, Jae-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.428-433
    • /
    • 2012
  • Probiotics and their products, such as yogurt and cheese have been widely consumed in many countries with proven health benefits including anti-microbial activity and anti-diarrheal activity. LHFM (Lactobacillus helveticus - fermented milk) is a processed skim milk powder, fermented by a probiotics, L. helveticus IDCC3801. In the present study, we aimed to investigate the neuroprotective effects and the cognitive improvements of LHFM. LHFM itself did not show any cytotoxicity to the human neuroblastoma cell line, SH-SY5Y; however, it dose-dependently protected against glutamate-induced neuronal cell death. LHFM also attenuated scopolamine-induced memory deficit in Y-maze and Morris-water maze. In the analysis of hippocampus after a behavior test, LHFM significantly increased the acetylcholine level and also inhibited acetylcholine esterase activity. Therefore, the raised acetylcholine release partially contributes to the improvement of learning and memory by a treatment with LHFM. These results suggest that LHFM is an effective material for prevention or improvement of cognitive impairments caused by neuronal cell damage and central cholinergic dysfunction.

Cytotoxic Effects of Methanol Extract and Fractions from Echinacea angustifolia on Cancer Cells (암세포에 대한 Echinacea angustifolia 순차 용매 추출물의 세포독성 효과)

  • Lee, Joon-Kyoung;Koo, Sung-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.123-127
    • /
    • 2002
  • Echinacea is a North American native medicinal herb used traditionally for wounds, burns, snake or insect bites, colds, infections, and inflammation by indigenous Americans. We investigated the effects of the root and stem of fresh Korean-grown Echinacea angustifolia methanol extracts and fractionation extracts on the cytotoxicity against cancer cells (HL60, 3LL). The extracts were prepared by step-wise fractionation of methanol extracts of Echinacea angustifolia using hexane, chloroform, ethyl acetate, buthanol, and water. From the tests, root and stem parts of Echinacea showed the cytotoxic effect on cancer cells. The cytotoxie rate of the ethyl acetate fraction of the root parts showed 79% against HL60 cells at low concentration (0.125 mg/mL), and hexane fraction of the root and stem parts gradually increased as the concentration of samples increased, and the root parts showed 82% at 1.0 mg/mL concentration against HL60 cells, chloroform fraction of the root part showed 78.4% against HL60 cells and 68.4% on 3LL cells at 1.0 mg/mL concentration, water and butanol fraction of these results, it is considered that ethyl acetate fraction of the root and stem parts showed 60.1% to 77.1% against HL60 cells, after testing by MTT assay system. From these results, it is considered that ethyl acetate fraction of the Echinacea angustifolia root parts has stronger anticancer effects than any other fractions in vitro.

In vitro Antioxidant and Anti-inflammatory Effects of Ethanol Extracts from Sprout of Evening Primrose (Oenothera laciniata) and Gooseberry (Actinidia arguta) (달맞이순과 다래순 에탄올 추출물의 in vitro 항산화효과 및 항염증효과)

  • Kwak, Chung Shil;Lee, Ji Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.2
    • /
    • pp.207-215
    • /
    • 2014
  • To investigate the biological benefits of Korean traditional vegetables, anti-oxidative and anti-inflammatory effects of ethanol extracts from blanched and dried sprouts of evening primrose (Oenothera laciniata, OL) and gooseberry (Actinidia arguta, AA) were measured. Total polyphenol and flavonoid contents of OL were higher than those of AA; OL contained 60.4 mg tannic acid/g dry weight and 31.9 mg rutin/g dry weight, while AA contained 33.0 mg tannic acid/g dry weight and 20.3 mg rutin/g dry weight. The $IC_{50}$ value for DPPH radical scavenging activity was $58.2{\mu}g/mL$ for OL ethanol extract and $122.1{\mu}g/mL$ for AA ethanol extract. The reducing power upon $500{\mu}g/mL$ of ethanol extract treatment was as strong as $52.1{\mu}g$ ascorbate eq./mL for OL and $45.3{\mu}g$ ascorbate eq./mL for AA. Regarding anti-inflammatory effects, inhibition rate against 5-lipoxygenase (LOX) and cyclooxygenase (COX)-2 activities were 29.5% and 79.5% for OL, as well as 11.5% and 39.1% for AA, respectively at a concentration of $250{\mu}g/mL$. Lipopolysaccaride ($1{\mu}g/mL$)-treated RAW 264.7 macrophage cells subjected to OL ethanol extract at various concentrations ($0{\sim}25{\mu}g/mL$) showed significantly reduced synthesis of nitrite oxide (NO), prostaglandin (PG) E2, and IL-6 in a dose-dependent manner without cytotoxicity, although TNF-${\alpha}$ synthesis was not affected. In conclusion, both OL and AA sprouts showed strong antioxidative activity, whereas OL showed very strong anti-inflammatory activity via effective reduction of NO, PGE2, and IL-6 synthesis in LPS-activated macrophage cells.

Anti-Oxidative and Anti-Inflammatory Activities of Euptelea Pleiosperma Ethanol Extract (Euptelea pleiosperma 에탄올 추출물의 항산화 및 항염증 활성)

  • Jin, Kyong-Suk;Park, Jung Ae;Lee, Ji Young;Kang, Ji Sook;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.170-176
    • /
    • 2014
  • In this study, the anti-oxidative and anti-inflammatory activities of Euptelea pleiosperma ethanol extract (EPEE) were evaluated using in vitro assays and cell culture model systems. EPEE possessed a more potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl than the ascorbic acid used as a positive control. EPEE effectively suppressed lipopolysaccharide (LPS), in addition to hydrogen peroxide induced reactive oxygen species on RAW 264.7 cells. Furthermore, EPEE induced the expression of the anti-oxidative enzyme heme oxygenase 1 (HO-1) and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2), dose and time dependently. The modulation of HO-1 and Nrf2 expression might be regulated by mitogen-activated protein kinases and phosphatidyl inositol 3 kinase/Akt as their upstream signaling pathways. On the other hand, EPEE inhibited LPS induced nitric oxide (NO) formation without cytotoxicity. Suppression of NO formation was the result of the down regulation of inducible NO synthase (iNOS) by EPEE. Suppression of NO and iNOS by EPEE may be modulated by their upstream transcription factor, nuclear factor ${\kappa}B$, and AP-1 pathways. Taken together, these results provide important new insights into E. pleiosperma, namely that it possesses anti-oxidative and anti-inflammatory activities, indicating that it could be utilized as a promising material in the field of nutraceuticals.

Effect of gomchwi (Ligularia fischeri) extract against high glucose- and H2O2-induced oxidative stress in PC12 cells (PC12 신경세포에서 고당 및 과산화수소로 유도된 산화적 스트레스에 대한 곰취 추출물의 효과)

  • Park, Sang Hyun;Park, Seon Kyeong;Ha, Jeong Su;Lee, Du Sang;Kang, Jin Yong;Kim, Jong Min;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.508-514
    • /
    • 2016
  • Effects of the ethyl acetate fraction from gomchwi (Ligularia fischeri) extract against high $glucose/H_2O_2-induced$ oxidative stress and in vitro neurodegeneration were investigated to confirm the physiological property of the extract. The ethyl acetate fraction of gomchwi extract showed the highest total phenolic contents than the other solvent fractions. An anti-hyperglycemic activity of the ethyl acetate fraction was evaluated using the ${\alpha}-glucosidase$ inhibitory assay, and the half maximal inhibitory concentration ($IC_{50}$) value for ${\alpha}-glucosidase$ was found to be $727.64{\mu}g/mL$. In addition, the ethyl acetate fraction showed excellent 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt radical scavenging activity, and inhibition of malondialdehyde production. The ethyl acetate fraction also decreased intracellular reactive oxygen species, whereas neuronal cell viability against high glucose/$H_2O_2$-induced cytotoxicity was found to be increased. Finally, 3,5-dicaffeoylquinic acid as a main phenolic compound in the ethyl acetate fraction was analyzed by high-performance liquid chromatography. These results suggest that gomchwi might be a good natural source of functional materials to prevent diabetic neurodegeneration.

The Mechanism of Interferon-$\gamma$ Induced Cytotoxicity on the Lung Cancer Cell Line, A549 (인터페론감마에 의한 A549 폐암세포주 세포독성의 기전)

  • Oh, Yeon-Mok;Yoo, Chul-Gyu;Chung, Hee-Soon;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.1
    • /
    • pp.63-68
    • /
    • 1996
  • Background: Interferon-$\gamma$ has various biologic effects, including antiviral effect, antitumor proliferative effect, activation of macrophage and B lymphocyte, and increased expression of major histocompatibility complex. Especially, antitumor proliferative effect of interferon-$\gamma$ has already been proved to be important in vivo as well as in vitro. And, clinical studies of interferon-$\gamma$ have been tried in lung cancer patients. However, the mechanism of antitumor effect of interferon-$\gamma$ has not yet been established despite of many hypotheses. "Necrosis" is a type of cell death which is well known to occur in the circumstances of severe stresses. In contrast, "apoptosis" is another type of cell death which occurs in such biological circumstances as embryonic development, regression of organs, and self-tolerance of lymphocytes. And, apoptosis is an active process of cell death in which cells are dying with fragmentations of their cytoplasms and nuclei. And, in the process of apoptosis the DNAs of cells are cleaved between nucleosomes by unidentified endonuclease and therefore DNAs of apoptotic cells result in a typical electrophoresis pattern known as DNA ladder pattern. Recently it has been suggested that cytotoxic effect of interferon-$\gamma$ occurs via apoptosis. To elucidate the mechanism of antitumor cytotoxic effect of interferon-$\gamma$, we microscopically observed a lung cancer cell line, A549 which was treated with interferon-$\gamma$. We observed A545 treated with interferon-$\gamma$ was dying fragmented. And so, we performed this study to find out that the mechanism of antitumor cytotoxic effect of interferon-$\gamma$ be apoptosis. Method: We treated A549, human lung cancer cell line with various concentration of interferon-$\gamma$ and quantified its cytotoxic effect of various periods, 24 hours, 72 hours and, 120 hours by MTT(dimethylthiazolyl diphenyltetrazolium bromide) bioassay. Also, after we treated A549 with 100 units/mi of interferon-$\gamma$ for 120 hours, we observed the pattern of cell death with inverted microscope and we extracted DNAs from the dead A549 cells and observed the pattern of 1.5% agarose gel electrophoresis with ethidium bromide staining. Result: 1) Cytotoxic effect of interferon-$\gamma$ on A549: For the first 24 hours, threre was little cytotoxic effect and for between 24 hours and 72 hours, there was the beginning of cytotoxic effect and for 120 hours there was increased cytotoxic effect. 2) Pattern of A549 cell death by interferon-$\gamma$: We observed with inverted microscope that A549 cells were dying fragmented. 3) DNA ladder pattern of gel electrophoresis: We observed DNA ladder pattern of gel electrophoresis of extracted DNAs from dead A549 cells. Conclusion: We concluded that the mechanism of interferon-$\gamma$induced cytotoxicity on lung cancer cell line, A549 be via apoptosis.

  • PDF

Effect of cadmium on immune responses and enzyme activities of BALB/c mice 1. Cellular immune responses (카드뮴이 BALB/c 마우스의 면역반응 및 효소활성에 미치는 영향 1. 세포성 면역반응)

  • Yoon, Chang-yong;Kim, Tae-joong;Song, Hee-jong
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.3
    • /
    • pp.543-552
    • /
    • 1995
  • This study was undertaken to investigate the eftects of Cd administered ad libitum for 6 weeks on the cellular immune responses of Balb/c mice. The results were summarized as follows; 1. The mice fed 25, 50 and 100ppm Cd drank as much as control, but the mice fed 200ppm Cd drank significantly less water after Cd exposure than did control. Increasing rates of body weight of Cd-fed mice for 6 weeks were as this, control group 27.0%, Cd administered groups(25, 50, 100 and 200ppm) 28.54%, 28.31%, 20.49% and 18.04%, respectively. 2. Absolute spleen to body weight(mg/g) of control, 25, 50, 100 and 200ppm Cd administered groups were $4.34{\pm}0.23$, $4.20{\pm}0.54$, $4.80{\pm}0.87$, $4.25{\pm}0.32$ and $4.40{\pm}0.32$, respectively. Splenic cellularity(${\times}10^7$) of control was $24.29{\pm}5.98$ but increased to $27.72{\pm}5.48$, $32.96{\pm}8.44$, $28.32{\pm}8.76$ and $29.64{\pm}4.08$ in 25, 50, 100 and 200ppm Cd-fed groups, respectively. 3. Total $CD_4{^+}$ cells(${\times}10^7$) of control, 25, 50, 100 and 200ppm Cd-fed groups were $9.15{\pm}2.24$, $10.40{\pm}2.04$, $12.04{\pm}3.08$, $10.20{\pm}3.16$ and $10.80{\pm}1.48$, respectively and total $CD_8{^+}$ cells(${\times}10^7$) of these groups were $2.32{\pm}0.56$, $2.54{\pm}0.27$, $3.12{\pm}0.80$, $2.25{\pm}0.70$ and $2.24{\pm}0.28$, in order. On the other hand, $CD_4{^+}/CD_8{^+}$ ratios in total cells were increased significantly except for 50ppm Cd-fed group($3.88{\pm}0.01$). And that of control was $3.97{\pm}0.02$, but those of 25, 100 and 200ppm were $4.35{\pm}0.01$, $4.54{\pm}0.03$ and $4.81{\pm}0.03$. 4. Phagocytosis rates of peritoneal macrophages were increased significantly in 25 and 50ppm Cd groups($36.34{\pm}9.45$ and $37.15{\pm}9.22$, respectively), but 100 and 200ppm groups showed similar rates($18.20{\pm}3.04$ and $19.48{\pm}3.22$ respectively) to that of control($21.43{\pm}3.62$). 5. In mitogen-induced splenocyte proliferation, various concentraions of $CdCl_2(10^{-4}-10^{-7}M)$ were added to mitogen-stimulated culture in vitro. Splenocyte proliferation induced by LPS was decreased dose dependently, but proliferation by Con-A was increased slightly in concentrations of $10^{-7}-10^{-6}M$. 6. Significant cytotoxicity of splenocytes with $CdCl_2$ were shown at $10^{-4}M$ treated group, especially at 24 hrs. From these results, it could be concluded that Cd might modulate the immune responses by modifying a distribution of T cell subpopulations.

  • PDF

PS-341-Induced Apoptosis is Related to JNK-Dependent Caspase 3 Activation and It is Negatively Regulated by PI3K/Akt-Mediated Inactivation of Glycogen Synthase Kinase-$3{\beta}$ in Lung Cancer Cells (폐암세포주에서 PS-341에 의한 아포프토시스에서 JNK와 GSK-$3{\beta}$의 역할 및 상호관련성)

  • Lee, Kyoung-Hee;Lee, Choon-Taek;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.5
    • /
    • pp.449-460
    • /
    • 2004
  • Background : PS-341 is a novel, highly selective and potent proteasome inhibitor, which showed cytotoxicity against some tumor cells. Its anti-tumor activity has been suggested to be associated with modulation of the expression of apoptosis-associated proteins, such as p53, $p21^{WAF/CIP1}$, $p27^{KIP1}$, NF-${\kappa}B$, Bax and Bcl-2. c-Jun N-terminal kinase (JNK) and glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$) are important modulators of apoptosis. However, their role in PS-341-induced apoptosis is unclear. This study was undertaken to elucidate the role of JNK and GSK-$3{\beta}$ in the PS-341-induced apoptosis in lung cancer cells. Method : NCI-H157 and A549 cells were used in the experiments. The cell viability was assayed using the MTT assay and apoptosis was evaluated by proteolysis of PARP. The JNK activity was measured by an in vitro immuno complex kinase assay and by phosphorylation of endogenous c-Jun. The protein expression was evaluated by Western blot analysis. Dominant negative JNK1 (DN-JNK1) and GSK-$3{\beta}$ were overexpressed using plasmid and adenovirus vectors, respectively. Result : PS-341 reduced the cell viability via apoptosis, activated JNK and increased the c-Jun expression. Blocking of the JNK activation by overexpression of DN-JNK1, or pretreatment with SP600125, suppressed the apoptosis induced by PS-341. The activation of caspase 3 was mediated by JNK activation. Blocking of the caspase 3 activation suppressed PS-341-induced apoptosis. PS-341 activated the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, but its blockade enhanced the PS-341-induced cell death via apoptosis. GSK-$3{\beta}$ was inactivated by PS-341 via the PI3K/Akt pathway. Overexpression of constitutively active GSK-$3{\beta}$ enhanced PS-341-induced apoptosis; in contrast, this was suppressed by dominant negative GSK-$3{\beta}$ (DN-GSK-$3{\beta}$). Inactivation of GSK-$3{\beta}$ by pretreatment with lithium chloride or the overexpression of DN-GSK-$3{\beta}$ suppressed both the JNK activation and c-Jun up-regulation induced by PS-341. Conclusion : The JNK/caspase pathway is involved in PS-341-induced apoptosis, which is negatively regulated by the PI3K/Akt-mediated inactivation of GSK-$3{\beta}$ in lung cancer cells.

Radioiodine Therapy of Liver Cancer Cell Following Tissue Specific Sodium Iodide Symporter Gene Transfer and Assessment of Therapeutic Efficacy with Optical Imaging (조직 특이 발현 Sodium Iodide Symporter 유전자 이입에 의한 방사성옥소 간암세포 치료와 광학영상을 이용한 치료효과 평가)

  • Jang, Byoung-Kuk;Lee, You-La;Lee, Yong-Jin;Ahn, Sohn-Joo;Ryu, Min-Jung;Yoon, Sun-Mi;Lee, Sang-Woo;Yoo, Jeong-Soo;Cho, Je-Yeol;Lee, Jae-Tae;Ahn, Byeong-Cheol
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.5
    • /
    • pp.383-393
    • /
    • 2008
  • Purpose: Cancer specific killing can be achieved by therapeutic gene activated by cancer specific promotor. Expression of sodium iodide symporter (NIS) gene causes transportation and concentration of iodide into the cell, therefore radioiodine treatment after NIS gene transfer to cancer cell could be a form of radionuclide gene therapy. luciferase (Luc) gene transfected cancer cell can be monitored by in vivo optical imaging after D-luciferin injection. Aims of the study are to make vector with both therapeutic NIS gene driven by AFP promoter and reporter Luc gene driven by CMV promoter, to perform hepatocellular carcinoma specific radiodiodine gene therapy by the vector, and assessment of the therapy effect by optical imaging using luciferase expression. Materials and Methods: A Vector with AFP promoter driven NIS gene and CMV promoter driven Luc gene (AFP-NIS-CMV-Luc) was constructed. Liver cancer cell (HepG2, Huh-7) and non liver cancer cell (HCT-15) were transfected with the vector using liposome. Expression of the NIS gene at mRNA level was elucidated by RT-PCR. Radioiodide uptake, perchlorate blockade, and washout tests were performed and bioluminescence also measured by luminometer in these cells. In vitro clonogenic assay with 1-131 was performed. In vivo nuclear imaging was obtained with gamma camera after 1-131 intraperitoneal injection. Results: A Vector with AFP-NIS-CMV-Luc was constructed and successfully transfected into HepG2, Huh-7 and HCT-15 cells. HepG2 and Huh-7 cells with AFP-NIS-CMV-Luc gene showed higher iodide uptake than non transfected cells and the higher iodide uptake was totally blocked by addition of perchlorate. HCT-15 cell did not showed any change of iodide uptake by the gene transfection. Transfected cells had higher light output than control cells. In vitro clonogenic assay, transfected HepG2 and Huh-7 cells showed lower colony count than non transfected HepG2 and Huh-7 cells, but transfected HCT-15 cell did not showed any difference than non transfected HCT-15 cell. Number of Huh-7 cells with AFP-NIS-CMV-Luc gene transfection was positively correlated with radioidine accumulation and luciferase activity. In vivo nuclear imaging with 1-131 was successful in AFP-NIS-CMV-Luc gene transfected Huh-7 cell xenograft on nude mouse. Conclusion: A Vector with AFP promoter driven NIS and CMV promoter driven Luc gene was constructed. Transfection of the vector showed liver cancer cell specific enhancement of 1-131 cytotoxicity by AFP promoter, and the effect of the radioiodine therapy can be successfully assessed by non-invasive luminescence measurement.