폐암세포주에서 PS-341에 의한 아포프토시스에서 JNK와 GSK-$3{\beta}$의 역할 및 상호관련성

PS-341-Induced Apoptosis is Related to JNK-Dependent Caspase 3 Activation and It is Negatively Regulated by PI3K/Akt-Mediated Inactivation of Glycogen Synthase Kinase-$3{\beta}$ in Lung Cancer Cells

  • 이경희 (서울대학교 의과대학 내과학교실 및 의학연구원 폐 연구소) ;
  • 이춘택 (서울대학교 의과대학 내과학교실 및 의학연구원 폐 연구소) ;
  • 김영환 (서울대학교 의과대학 내과학교실 및 의학연구원 폐 연구소) ;
  • 한성구 (서울대학교 의과대학 내과학교실 및 의학연구원 폐 연구소) ;
  • 심영수 (서울대학교 의과대학 내과학교실 및 의학연구원 폐 연구소) ;
  • 유철규 (서울대학교 의과대학 내과학교실 및 의학연구원 폐 연구소)
  • Lee, Kyoung-Hee (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Clinical Research Institute, Seoul National University Hospital, Lung Institute, Medical Research Center, Seoul National University College of Medicine) ;
  • Lee, Choon-Taek (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Clinical Research Institute, Seoul National University Hospital, Lung Institute, Medical Research Center, Seoul National University College of Medicine) ;
  • Kim, Young Whan (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Clinical Research Institute, Seoul National University Hospital, Lung Institute, Medical Research Center, Seoul National University College of Medicine) ;
  • Han, Sung Koo (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Clinical Research Institute, Seoul National University Hospital, Lung Institute, Medical Research Center, Seoul National University College of Medicine) ;
  • Shim, Young-Soo (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Clinical Research Institute, Seoul National University Hospital, Lung Institute, Medical Research Center, Seoul National University College of Medicine) ;
  • Yoo, Chul-Gyu (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Clinical Research Institute, Seoul National University Hospital, Lung Institute, Medical Research Center, Seoul National University College of Medicine)
  • 투고 : 2004.09.20
  • 심사 : 2004.10.26
  • 발행 : 2004.11.30

초록

연구배경 : PS-341은 최근에 개발된 강력하고 특이적인 proteasome 억제제로서, 일부 암환자에 투여하여 좋은 성적이 보고되고 있다. Proteasome 억제제의 항암효과는 아포프토시스 유발 물질, 즉 p53, $p21^{WAF/CIP1}$, $p27^{KIP1}$, NF-${\kappa}B$, Bax, Bcl-2 등의 발현 증가와 관련이 있는 것으로 생각되고 있다. JNK와 GSK-$3{\beta}$도 아포프토시스에 관여하는 것으로 잘 알려져 있지만, PS-341에 의한 아포프토시스에서의 역할은 규명되지 못한 상태이다. 본 연구에서는 폐암세포주에서 PS-341에 의한 아포프토시스에서 JNK와 GSK-$3{\beta}$의 역할을 규명하고자 하였다. 방 법 : NCI-H157과 A549 폐암세포주를 실험에 사용하였다. 세포생존능은 MTT 방법으로 평가하였고, 아포프토시스는 PARP의 분해로 평가하였다. JNK의 활성도는 in vitro immuno complex kinase 방법과 내인성 c-Jun의 인산화로 측정하였다. 각종 단백의 발현은 Western 분석으로 평가하였다. JNK1과 GSK-$3{\beta}$의 과발현은 각각 plasmid vector와 adenovirus vector를 이용하였다. 결 과 : PS-341 처치로 아포프토시스에 의한 세포생존율의 감소가 관찰되었다. PS-341 처치로 JNK가 활성화되었고, c-Jun의 발현이 유도되었다. Dominant negative JNK1의 과발현 또는 SP600125 전치치로 JNK의 활성화를 차단하면 PS-341에 의한 아포프토시스가 억제되었다. PS-341 처리로 JNK 활성화에 의존적으로 caspase 3의 활성화가 유도되었다. Caspase 활성화의 차단으로도 PS-341에 의한 아포프토시스가 억제되었다. PS-341에 의해 Akt가 활성화되었고, Akt 활성화의 차단으로 PS-341에 의한 아포프토시스가 심화되었다. PS-341에 의한 Akt 활성화로 GSK-$3{\beta}$가 불활성화되었다. Constitutively active GSK-$3{\beta}$의 과발현으로 PS-341에 의한 아포프토시스가 심화되었고, dominant negative GSK-$3{\beta}$의 과발현으로 PS-341에 의한 아포프토시스가 감소되었다. Lithium chloride 전처치와 dominant negative GSK-$3{\beta}$의 과발현으로 PS-341에 의한 JNK의 활성화와 c-Jun의 발현 증가가 억제되었다. 결 론 : 폐암세포주에서 PS-341에 의한 아포프토시스는 JNK/caspase 경로가 관여하며, 이는 PI3K/Akt 경로를 통한 GSK-$3{\beta}$의 불활성화에 의해 억제되는 것으로 판단된다. 따라서 PS-341의 항암효과를 최대화하기 위해서는 PI3K/Akt 경로를 통한 GSK-$3{\beta}$의 불활성화를 차단하는 치료법이 병행되어야 할 것으로 판단된다.

Background : PS-341 is a novel, highly selective and potent proteasome inhibitor, which showed cytotoxicity against some tumor cells. Its anti-tumor activity has been suggested to be associated with modulation of the expression of apoptosis-associated proteins, such as p53, $p21^{WAF/CIP1}$, $p27^{KIP1}$, NF-${\kappa}B$, Bax and Bcl-2. c-Jun N-terminal kinase (JNK) and glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$) are important modulators of apoptosis. However, their role in PS-341-induced apoptosis is unclear. This study was undertaken to elucidate the role of JNK and GSK-$3{\beta}$ in the PS-341-induced apoptosis in lung cancer cells. Method : NCI-H157 and A549 cells were used in the experiments. The cell viability was assayed using the MTT assay and apoptosis was evaluated by proteolysis of PARP. The JNK activity was measured by an in vitro immuno complex kinase assay and by phosphorylation of endogenous c-Jun. The protein expression was evaluated by Western blot analysis. Dominant negative JNK1 (DN-JNK1) and GSK-$3{\beta}$ were overexpressed using plasmid and adenovirus vectors, respectively. Result : PS-341 reduced the cell viability via apoptosis, activated JNK and increased the c-Jun expression. Blocking of the JNK activation by overexpression of DN-JNK1, or pretreatment with SP600125, suppressed the apoptosis induced by PS-341. The activation of caspase 3 was mediated by JNK activation. Blocking of the caspase 3 activation suppressed PS-341-induced apoptosis. PS-341 activated the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, but its blockade enhanced the PS-341-induced cell death via apoptosis. GSK-$3{\beta}$ was inactivated by PS-341 via the PI3K/Akt pathway. Overexpression of constitutively active GSK-$3{\beta}$ enhanced PS-341-induced apoptosis; in contrast, this was suppressed by dominant negative GSK-$3{\beta}$ (DN-GSK-$3{\beta}$). Inactivation of GSK-$3{\beta}$ by pretreatment with lithium chloride or the overexpression of DN-GSK-$3{\beta}$ suppressed both the JNK activation and c-Jun up-regulation induced by PS-341. Conclusion : The JNK/caspase pathway is involved in PS-341-induced apoptosis, which is negatively regulated by the PI3K/Akt-mediated inactivation of GSK-$3{\beta}$ in lung cancer cells.

키워드

참고문헌

  1. Goldberg AL, Stein R, Adams J. New insights into proteasome function: from archaebacteria to drug development. Chem Biol 1995;28:503-8
  2. Coux O, Tanaka K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 1996;65:801-47
  3. King RW, Deahaies RJ, Peters JM, Kirschner MW. How proteolysis drives the cell cyde. Science 1996;274:1652-9
  4. Elledge SJ, Harper JW. Cdk inhibitors: on the threshold of checkpoints and development. Curr Opin Cell Biol 1994;6:847-52
  5. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 1994;78:773-85
  6. Stancovski I, Gonen H, Orian A, Schwartz AL, Cie chanover A. Degradation of the proto-oncogene product c-Fos by the ubiquitin proteolytic system in vivo and in vitro: identification and characterization of the conjugating enzymes. Mol Cell Biol 1995;15:106-16
  7. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 1995;269:682-5
  8. Maki CG, Huibregtse JM, Howley PM. In vivo ubiquitination and proteasome-mediated degradation of p53. Cancer Res 1996;56:2649-54
  9. Pagano M. Cell cycle regulation by the ubiquitin pathway. FASEB J 1997;11:1067-75
  10. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, et al. Proteasome inhibitors:a novel class of potent and effective antitumor aeents. Cancer Res 1999;59:2615-22
  11. Kim CH, Lee KH, Lee CT, Kim YW, Han SK, Shim YS, et al. The mechanism of proteasome inhibitor-induced apoptosis in lung cancer cells. Tuberc Respir Dis 2003;54:403-14
  12. Lopes UG, Erhardt P, Yao R, Cooper GM. p53-dependent induction of apoptosis by proteasome inhibitors. J Biol Chem 1997;272:12893-6
  13. Drexler HC, Risau W, Konerding MA. Inhibition of proteasome function induces programmed cell death in proliferatine endothelial cells. FASEB J 2000;14:65-77
  14. Sunwoo JB, Chen Z, Done G, Yeh N, Crowl BC, Sausville E, et al. Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin Cancer Res. 2001:7:1419-28
  15. Chen YR, Wane X, Templeton D, Davis RJ, Tan TH. The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation. J Biol Chem 1996;271:31929-36
  16. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposine effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995:270:1326-31
  17. Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, et al. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 1996;380:75-9
  18. Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci. 2003;116:1175-86
  19. Bhat RV, Shanley J, Correll MP, Fieles WE, Keith RA, Scott CW, et al. Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration. Proc Natl Acad Sci U S A 2000;97:11074-9
  20. Voorhees PM, Dees EC, O'Neil B, Orlowski RZ. The proteasome as a target for cancer therapy. Clin Cancer Res. 2003;9:6316-25
  21. Grimm LM, Goldberg AL, Poirier GG, Schwartz LM, Osborne BA. Proteasomes play an essential role in thymocyte apoptosis. EMBO J 1996;15:3835-44
  22. Sadoul R, Fernandez PA, Quiquerez AL, Martinou I, Maki M, Schroter M, et al. Involvement of the proteasome in the programmed cell death of NGF-deprived sympathetic neurons. EMBO J 1996;15:3845-52
  23. Drexler HC. Activation of the cell death program by inhibition of proteasome function. Proc Natl Acad Sci USA 1997;94:855-60
  24. Cui H, Matsui K, Omura S, Schauer SL, Matulka RA, Sonenshein GE, et al. Proteasome regulation of activation-induced T cell death. Proc Natl Acad Sci USA 1997;94:7515-20
  25. Meriin AB, Gabai VL, Yaglom J, Shifrin VI, Sherman MY. Proteasome inhibitors activate stress kinases and induce Hsp72. Diverse effects on apoptosis. J Biol Chem 1998;273:6373-9
  26. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X, et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 2002;99:14374-9
  27. Boyle WJ, Smeal T, Defize LH, Angel P, Woodgett JR, Karin M, et al. Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell 1991;64:573-84
  28. Hongisto V, Smeds N, Brecht S, Herdegen T, Courtney MJ, Coffey ET. Lithium blocks the c-Jun stress response and protects neurons via its action on elycogen synthase kinase 3. Mol Cell Biol 2003;23:6027-36
  29. Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 1996;93:8455-9
  30. Stambolic V, Ruel L, Woodeett JR. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 1996;6:1664-8
  31. Phiel CJ, Klein PS. Molecular targets of lithium action. Annu Rev Pharmacol Toxicol 2001;41:789-813
  32. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998;281:1312-6