• 제목/요약/키워드: In vitro binding assay

검색결과 187건 처리시간 0.031초

LAMMER Kinase Modulates Cell Cycle by Phosphorylating the MBF Repressor, Yox1, in Schizosaccharomyces pombe

  • Kibum Park;Joo-Yeon Lim;Je-Hoon Kim;Jieun Lee;Songju Shin;Hee-Moon Park
    • Mycobiology
    • /
    • 제51권5호
    • /
    • pp.372-378
    • /
    • 2023
  • Lkh1, a LAMMER kinase homolog in the fission yeast Schizosaccharomyces pombe, acts as a negative regulator of filamentous growth and flocculation. It is also involved in the response to oxidative stress. The lkh1-deletion mutant displays slower cell growth, shorter cell size, and abnormal DNA content compared to the wild type. These phenotypes suggest that Lkh1 controls cell size and cell cycle progression. When we performed microarray analysis using the lkh1-deletion mutant, we found that only four of the up-regulated genes in the lkh1-deletion were associated with the cell cycle. Interestingly, all of these genes are regulated by the Mlu1 cell cycle box binding factor (MBF), which is a transcription complex responsible for regulating the expression of cell cycle genes during the G1/S phase. Transcription analyses of the MBF-dependent cell-cycle genes, including negative feedback regulators, confirmed the up-regulation of these genes by the deletion of lkh1. Pull-down assay confirmed the interaction between Lkh1 and Yox1, which is a negative feedback regulator of MBF. This result supports the involvement of LAMMER kinase in cell cycle regulation by modulating MBF activity. In vitro kinase assay and NetPhosK 2.0 analysis with the Yox1T40,41A mutant allele revealed that T40 and T41 residues are the phosphorylation sites mediated by Lkh1. These sites affect the G1/S cell cycle progression of fission yeast by modulating the activity of the MBF complex.

MLSB 항생제 내성인자인 ErmSF의 N-terminal 38개 아미노산 제거가 항생제 내성 효소활성에 미치는 영향 (Effect of Truncation of 38 Amino Acids in N-terminal Region of ErmSF, a MLSB Antibiotic Resistance Factor Protein, on Enzymatic Activity)

  • 이학진;진형종
    • 미생물학회지
    • /
    • 제50권3호
    • /
    • pp.239-244
    • /
    • 2014
  • ErmSF는 macrolide 항생물질인 tylosin을 생성하는 Streptomyces fradiae가 보유한 4개의 항생제 내성인자 단백질 중 하나로 23S rRNA의 $A_{2058}$에 dimethylation 시킴으로써 항생제가 부착되는 것을 막음으로써 그 내성을 일으킨다. ErmSF는 다른 Erm 단백질과는 달리 긴 N-terminal end region을 가지고 있어서 그 역할을 알아보기 위해 1-38번째의 아미노산을 제거한 결손변이 단백질을 고안하고 대장균에서 발현하여 그 활성을 in vivo와 in vitro에서 관찰하였다. 결손변이 단백질을 발현하는 대장균은 결손에 의한 활성저하에 기인하여 야생형 단백질을 발현하는 대장균에 비하여 항생제에 대한 내성이 손상된 것을 관찰하였다. 세포 외 in vitro에서의 활성은 야생형 ErmSF에 비하여 약 20%가 손상된 것으로 나타났다. 이렇게 관찰된 활성의 저하는 결손 변이에 의한 활성화 부위에서 일어난 결손에 의한 것이라기 보다는 기질의 부착 또는 생성물의 효소에서의 이탈 과정이 손상되어서 나타나는 것으로 사료된다.

Effects of puerarin on the Akt signaling pathway in bovine preadipocyte differentiation

  • Yun, Jinyan;Yu, Yongsheng;Zhou, Guoli;Luo, Xiaotong;Jin, Haiguo;Zhao, Yumin;Cao, Yang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권1호
    • /
    • pp.4-11
    • /
    • 2020
  • Objective: Puerarin has the potential of regulating the differentiation of preadipocytes, but its mechanism of action has not yet been elucidated. Adipocytes found in adipose tissue, the main endocrine organ, are the main sites of lipid deposition, and are widely used as a cell model in the study of in vitro fat deposition. This study aimed to investigate the effects of puerarin on adipogenesis in vitro. Methods: Puerarin was added to the culture medium during the process of adipogenesis. The proliferation and differentiation of bovine preadipocytes was measured through cell viability and staining with oil red O. The content of triacylglycerol was measured using a triglyceride assay kit. The mRNA and protein expression levels of adipogenic genes, peroxisome proliferator-activated receptor-γ (PPARγ) and CCAAT/enhancer-binding protein-α, were measured using quantitative real-time polymerase chain reaction and western blotting, respectively. Results: The addition of puerarin significantly increased adipogenesis of bovine preadipocytes and enhanced the mRNA and protein level expression of PPARγ (p<0.01). The expression of P-Akt increased after adipogenic hormonal induction, whereas puerarin significantly increased PPARγ expression by promoting the Akt signaling component, P-Akt. The mechanism of adipogenesis was found to be related to the phosphorylation level of Ser473, which may activate the downstream signaling of the Akt pathway. Conclusion: Puerarin was able to promote the differentiation of preadipocytes and improve fat deposition in cattle. The mechanism of adipogenesis was found to be related to the phosphorylation level of Ser473.

Effect of Enterococcus faecalis strain PL9003 on Adherence and Growth of Helicobacter pylori

  • Nam, Hye-Ran;Ha, Mi-Sun;Lee, En-Jung;Lee, Yeon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권5호
    • /
    • pp.746-752
    • /
    • 2002
  • The purpose of the present study was to examine the antagonistic activities of Enterococcus faecalis strain PL9003 (PL9003) on Helicobacter pylori. This strain was isolated from infant feces and found to inhibit both the growth of H. pylori and its in vitro adherence to the human gastric cell line MKN-45. The binding of PL9003 to MKN-45 was observed under a light microscope after Cram staining and under a scanning electron microscope. When detected with an FITC-conjugate antibody, both viable and nonviable PL9003 were found to decrease the number of H. pylori bound to MKN-45. When detected by an enzyme-linked immunoabsorbent assay, about 70% of the H. pylori bound on MKN-45 disappeared with the four-1314 addition of viable or nonviable PL9003. The spent culture supernatant (SCS) of PL9003 also decreased the viability of H pylori even after neutralization and pepsin treatment. The above results suggest that PL9003 has a potential as a new probiotic for the stomach.

Characterization of CYP125A13, the First Steroid C-27 Monooxygenase from Streptomyces peucetius ATCC27952

  • Rimal, Hemraj;Subedi, Pradeep;Kim, Ki -Hwa;Park, Hyun;Lee, Jun Hyuck;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권11호
    • /
    • pp.1750-1759
    • /
    • 2020
  • The characterization of cytochrome P450 CYP125A13 from Streptomyces peucetius was conducted using cholesterol as the sole substrate. The in vitro enzymatic assay utilizing putidaredoxin and putidaredoxin reductase from Pseudomonas putida revealed that CYP125A13 bound cholesterol and hydroxylated it. The calculated KD value, catalytic conversion rates, and Km value were 56.92 ± 11.28 μM, 1.95 nmol min-1 nmol-1, and 11.3 ± 2.8 μM, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis showed that carbon 27 of the cholesterol side-chain was hydroxylated, characterizing CYP125A13 as steroid C27-hydroxylase. The homology modeling and docking results also revealed the binding of cholesterol to the active site, facilitated by the hydrophobic amino acids and position of the C27-methyl group near heme. This orientation was favorable for the hydroxylation of the C27-methyl group, supporting the in vitro analysis. This was the first reported case of the hydroxylation of cholesterol at the C-27 position by Streptomyces P450. This study also established the catalytic function of CYP125A13 and provides a solid basis for further studies related to the catabolic potential of Streptomyces species.

Protein target identification of ginsenosides in skeletal muscle tissues: discovery of natural small-molecule activators of muscle-type creatine kinase

  • Chen, Feiyan;Zhu, Kexuan;Chen, Lin;Ouyang, Liufeng;Chen, Cuihua;Gu, Ling;Jiang, Yucui;Wang, Zhongli;Lin, Zixuan;Zhang, Qiang;Shao, Xiao;Dai, Jianguo;Zhao, Yunan
    • Journal of Ginseng Research
    • /
    • 제44권3호
    • /
    • pp.461-474
    • /
    • 2020
  • Background: Ginseng effectively reduces fatigue in both animal models and clinical trials. However, the mechanism of action is not completely understood, and its molecular targets remain largely unknown. Methods: By screening for proteins that interact with the primary components of ginseng (ginsenosides) in an affinity chromatography assay, we have identified muscle-type creatine kinase (CK-MM) as a potential target in skeletal muscle tissues. Results: Biolayer interferometry analysis showed that ginsenoside metabolites, instead of parent ginsenosides, had direct interaction with recombinant human CK-MM. Subsequently, 20(S)-protopanaxadiol (PPD), which is a ginsenoside metabolite and displayed the strongest interaction with CK-MM in the study, was selected as a representative to confirm direct binding and its biological importance. Biolayer interferometry kinetics analysis and isothermal titration calorimetry assay demonstrated that PPD specifically bound to human CK-MM. Moreover, the mutation of key amino acids predicted by molecular docking decreased the affinity between PPD and CK-MM. The direct binding activated CK-MM activity in vitro and in vivo, which increased the levels of tissue phosphocreatine and strengthened the function of the creatine kinase/phosphocreatine system in skeletal muscle, thus buffering cellular ATP, delaying exercise-induced lactate accumulation, and improving exercise performance in mice. Conclusion: Our results suggest a cellular target and an initiating molecular event by which ginseng reduces fatigue. All these findings indicate PPD as a small molecular activator of CK-MM, which can help in further developing better CK-MM activators based on the dammarane-type triterpenoid structure.

이온화 방사선 및 염화수은(II)에 의한 자궁경부암 세포의 DNA 손상 평가 (Evaluation of DNA Damage by Mercury Chloride (II) and Ionizing Radiation in HeLa Cells)

  • 우현정;김지향;안토니나 체불스카바실레프스카;김진규
    • 환경생물
    • /
    • 제24권1호
    • /
    • pp.46-52
    • /
    • 2006
  • 세포에 미치는 염화수은(II)과 이온화 방사선의 영향과 수은 처리 전 후 방사선 조사 시 그 상호 작용에 관해 알아보고자 본 연구를 수행하였다. 염화수은(II)의 독성정도를 알아보기 위하여 사람의 자궁암 세포에 농도별로 염화수은(II)을 처리하였다. 세포의 생존율은 3가지 농도(1,0. 1,0. $0.01\;{\mu}M$)모두에서 유의하게 감소하였으며 이미 $0.1\;{\mu}M$에서 약 73%의 생존율이 감소하는 것으로 나타났다. 염화수은(II)과 방사선의 단독처리 시 DNA의 손상 정도에 비해 복합처리 시의 DNA손상 정도가 $2\sim4$배 정도 확연히 높아짐을 볼 수 있었다. 특히 방사선 후 수은 처리군은 DNA손상의 정도가 다른 처리군에 비하여 높게 나타났는데 이는 이미 기존의 보문에서 밝혀진 바와 같이 수은의 DNA수복에 관련되어 있는 Fpg protein에 미치는 영향 때문으로 사료된다. 이미 방사선에 의해 산화적 손상을 입은 DNA의 수복 기작을 수은이 방해하여 좀 더 높은 손상을 가져오는 것을 확인할 수 있었다.

The role of ginsenoside Rb1, a potential natural glutathione reductase agonist, in preventing oxidative stress-induced apoptosis of H9C2 cells

  • Fan, Hui-Jie;Tan, Zhang-Bin;Wu, Yu-Ting;Feng, Xiao-Reng;Bi, Yi-Ming;Xie, Ling-Peng;Zhang, Wen-Tong;Ming, Zhi;Liu, Bin;Zhou, Ying-Chun
    • Journal of Ginseng Research
    • /
    • 제44권2호
    • /
    • pp.258-266
    • /
    • 2020
  • Background: Oxidative stress-induced cardiomyocytes apoptosis is a key pathological process in ischemic heart disease. Glutathione reductase (GR) reduces glutathione disulfide to glutathione (GSH) to alleviate oxidative stress. Ginsenoside Rb1 (GRb1) prevents the apoptosis of cardiomyocytes; however, the role of GR in this process is unclear. Therefore, the effects of GRb1 on GR were investigated in this study. Methods: The antiapoptotic effects of GRb1 were evaluated in H9C2 cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, annexin V/propidium iodide staining, and Western blotting. The antioxidative effects were measured by a reactive oxygen species assay, and GSH levels and GR activity were examined in the presence and absence of the GR inhibitor 1,3-bis-(2-chloroethyl)-1-nitrosourea. Molecular docking and molecular dynamics simulations were used to investigate the binding of GRb1 to GR. The direct influence of GRb1 on GR was confirmed by recombinant human GR protein. Results: GRb1 pretreatment caused dose-dependent inhibition of tert-butyl hydroperoxide-induced cell apoptosis, at a level comparable to that of the positive control N-acetyl-L-cysteine. The binding energy between GRb1 and GR was positive (-6.426 kcal/mol), and the binding was stable. GRb1 significantl reduced reactive oxygen species production and increased GSH level and GR activity without altering GR protein expression in H9C2 cells. Moreover, GRb1 enhanced the recombinant human GR protein activity in vitro, with a half-maximal effective concentration of ≈2.317 μM. Conversely, 1,3-bis-(2-chloroethyl)-1-nitrosourea co-treatment significantly abolished the GRb1's apoptotic and antioxidative effects of GRb1 in H9C2 cells. Conclusion: GRb1 is a potential natural GR agonist that protects against oxidative stress-induced apoptosis of H9C2 cells.

Generation and Characterization of a Neutralizing Human Monoclonal Antibody to Hepatitis B Virus PreS1 from a Phage-Displayed Human Synthetic Fab Library

  • Jo, Gyunghee;Jeong, Mun Sik;Wi, Jimin;Kim, Doo Hyun;Kim, Sangkyu;Kim, Dain;Yoon, Jun-Yeol;Chae, Heesu;Kim, Kyun-Hwan;Hong, Hyo Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1376-1383
    • /
    • 2018
  • The hepatitis B virus (HBV) envelope contains small (S), middle (M), and large (L) proteins. PreS1 of the L protein contains a receptor-binding motif crucial for HBV infection. This motif is highly conserved among 10 HBV genotypes (A-J), making it a potential target for the prevention of HBV infection. In this study, we successfully generated a neutralizing human monoclonal antibody (mAb), 1A8 (IgG1), that recognizes the receptor-binding motif of preS1 using a phage-displayed human synthetic Fab library. Analysis of the antigen-binding activity of 1A8 for different genotypes indicated that it can specifically bind to the preS1 of major HBV genotypes (A-D). Based on Bio-Layer interferometry, the affinity ($K_D$) of 1A8 for the preS1 of genotype C was 3.55 nM. 1A8 immunoprecipitated the hepatitis B virions of genotypes C and D. In an in vitro neutralization assay using HepG2 cells overexpressing the cellular receptor sodium taurocholate cotransporting polypeptide, 1A8 effectively neutralized HBV infection with genotype D. Taken together, the results suggest that 1A8 may neutralize the four HBV genotypes. Considering that genotypes A-D are most prevalent, 1A8 may be a neutralizing human mAb with promising potential in the prevention and treatment of HBV infection.

Systematic Identification of Hepatocellular Proteins Interacting with NS5A of the Hepatitis C Virus

  • Ahn, Ji-Won;Chung, Kyung-Sook;Kim, Dong-Uk;Won, Mi-Sun;Kim, Li-La;Kim, Kyung-Shin;Nam, Mi-Young;Choi, Shin-Jung;Kim, Hyoung-Chin;Yoon, Mi-Chung;Chae, Suhn-Kee;Hoe, Kwang-Lae
    • BMB Reports
    • /
    • 제37권6호
    • /
    • pp.741-748
    • /
    • 2004
  • The hepatitis C virus is associated with the development of liver cirrhosis and hepatocellular carcinomas. Among the 10 polyproteins produced by the virus, no function has been clearly assigned to the non-structural 5A (NS5A) protein. This study was designed to identify the hepatocellular proteins that interact with NS5A of the HCV. Yeast two-hybrid experiments were performed with a human liver cDNA prey-library, using five different NS5A derivatives as baits, the full-length NS5A (NS5A-F, amino acid (aa) 1~447) and its four different derivatives, denoted as NS5A-A (aa 1~150), -B (aa 1~300), -C (aa 300~447) and D (aa 150~447). NS5A-F, NS5A-B and NS5A-C gave two, two and 10 candidate clones, respectively, including an AHNAK-related protein, the secreted frizzled-related protein 4 (SFRP4), the N-myc downstream regulated gene 1 (NDRG1), the cellular retinoic acid binding protein 1 (CRABP-1), ferritin heavy chain (FTH1), translokin, tumor-associated calcium signal transducer 2 (TACSTD2), phosphatidylinositol 4-kinase (PI4K) and $centaurin{\delta}$ 2 ($CENT{\delta}2$). However, NS5A-A produced no candidates and NS5A-D was not suitable as bait due to transcriptional activity. Based on an in vitro binding assay, CRABP-1, PI4K, $CENT{\delta}2$ and two unknown fusion proteins with maltose binding protein (MBP), were confirmed to interact with the glutathione S-transferase (GST)/NS5A fusion protein. Furthermore, the interactions of CRABP-1, PI4K and $CENT{\delta}2$ were not related to the PXXP motif (class II), as judged by a domain analysis. While their biological relevance is under investigation, the results contribute to a better understanding of the possible role of NS5A in hepatocellular signaling pathways.