• Title/Summary/Keyword: In vitro Rumen Fermentation

Search Result 251, Processing Time 0.027 seconds

Evaluation of in vitro ruminal fermentation of ensiled fruit byproducts and their potential for feed use

  • Mousa, Shimaa A;Malik, Pradeep K.;Kolte, Atul P.;Bhatta, Raghavendra;Kasuga, Shigemitsu;Uyeno, Yutaka
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.1
    • /
    • pp.103-109
    • /
    • 2019
  • Objective: Ensiling of tannin-rich fruit byproducts (FB) involves quantitative and qualitative changes in the tannins, which would consequently change the rumen fermentation characteristics. This study aimed to evaluate whether ensiled FBs are effective in mitigating methane emission from ruminants by conducting in vitro assessments. Methods: Fruit byproducts (grape pomace, wild grape pomace, and persimmon skin) were collected and subjected to four-week ensiling by Lactobacillus buchneri inoculant. A defined feed component with or without FB samples (both fresh and ensiled material) were subjected to in vitro anaerobic culturing using rumen fluid sampled from beef cattle, and the fermentation parameters and microbial populations were monitored. Results: Reduced methane production and a proportional change in total volatile fatty acids (especially enhanced propionate proportion) was noted in bottles containing the FBs compared with that in the control (without FB). In addition, we found lower gene copy number of archaeal 16S rRNA and considerably higher levels of one of the major fibrolytic bacteria (Fibrobacter succinogenes) in the bottles containing FBs than in the control, particularly, when it was included in a forage-based feed. However, in the following cultivation experiment, we observed that FBs failed to exhibit a significant difference in methane production with or without polyethylene glycol, implying that tannins in the FBs may not be responsible for the mitigation of methane generation. Conclusion: The results of the in vitro cultivation experiments indicated that not only the composition but also ensiling of FBs affected rumen fermentation patterns and the degree of methane generation. This is primarily because of the compositional changes in the fibrous fraction during ensiling as well as the presence of readily fermented substrates, whereas tannins in these FBs seemed to have little effect on the ruminal fermentation kinetics.

Using Plant Source as a Buffering Agent to Manipulating Rumen Fermentation in an In vitro Gas Production System

  • Kang, S.;Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.10
    • /
    • pp.1424-1436
    • /
    • 2013
  • The objective of this study was to investigate the effect of banana flower powder (BAFLOP) supplementation on gas production kinetics and rumen fermentation efficiency in in vitro incubation with different ratios of roughage to concentrate in swamp buffalo and cattle rumen fluid. Two male, rumen fistulated dairy steers and swamp buffaloes were used as rumen fluid donors. The treatments were arranged according to a $2{\times}2{\times}3$ factorial arrangement in a Completely randomized design by using two ratios of roughage to concentrate (R:C; 75:25 and 25:75) and 3 levels of BAFLOP supplementation (0, 2 and 4% of dietary substrate) into two different kinds of rumen fluid (beef cattle and swamp buffalo). Under this investigation, the results revealed that the rumen ecology was affected by R:C ratio. The pH declined as a result of using high concentrate ratio; however, supplementation of BAFLOP could buffer the pH which led to an improvement of ruminal efficiency. BAFLOP supplementation affected acetic acid (C2) when the proportion of concentrate was increased. However, there were no effect on total volatile fatty acid (TVFA) and butyric acid (C4) by BAFLOP supplementation. The microbial community was affected by BAFLOP supplementation, especially the bacterial population. As revealed by real-time PCR, the populations of F. succinogenes and R. albus were reduced by the high concentrate treatments while that of R. flavafaciens were increased. The populations of three dominant cellulolytic bacteria were enhanced by BAFLOP supplementation, especially on high concentrate diet. BAFLOP supplementation did not influence the ammonia nitrogen ($NH_3$-N) concentration, while R:C did. In addition, the in vitro digestibility was improved by either R:C or BAFLOP supplementation. The BAFLOP supplementation showed an effect on gas production kinetics, except for the gas production rate constant for the insoluble fraction (c), while treatments with high concentrate ratio resulted in the highest values. In addition, BAFLOP tended to increase gas production. Based on this study, it could be concluded that R:C had an effect on rumen ecology both in buffalo and cattle rumen fluid and hence, BAFLOP could be used as a rumen buffering agent for enhancing rumen ecology fed on high concentrate diet. It is recommended that level of BAFLOP supplementation should be at 2 to 4% of total dry matter of substrate. However, in vivo trials should be subsequently conducted to investigate the effect of BAFLOP in high concentrate diets on rumen ecology as well as ruminant production.

Substitution effects of rice for corn grain in total mixed ration on rumen fermentation characteristics and microbial community in vitro

  • Yoo, Daekyum;Hamid, Muhammad Mahboob Ali;Kim, Hanbeen;Moon, Joonbeom;Song, Jaeyong;Lee, Seyoung;Seo, Jakyeom
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.638-647
    • /
    • 2020
  • This study determined the substitution effects of rice for corn as the main grain source in a total mixed ration (TMR). In vitro rumen fermentation characteristics and microbes were assessed using two experimental diets. Diets included 33% dry matter (DM) of either corn (Corn TMR) or rice grains (Rice TMR). In a 48-h in vitro incubation, DM digestibility (IVDMD), neutral detergent fiber degradability (IVNDFD), crude protein digestibility (IVCPD), volatile fatty acids (VFAs), pH and ammonia nitrogen (NH3-N) were estimated. Gas production has been calculated at 3, 6, 12, 24 and 48 h. Our results indicate that the gas production, VFAs, IVDMD, and IVNDFD of Rice TMR were higher than those of Corn TMR (p < 0.05). Ruminal pH and total fungi were significantly higher in Corn TMR (p < 0.05) than in Rice TMR; however, NH3-N and IVCPD were not affected by treatment type. In conclusion, substituting rice for corn at 33% DM in TMR appears to have no negative effects on in vitro rumen fermentation characteristics. Therefore, rice grains are an appropriate alternative energy source in early fattening stage diets of beef cattle.

Use of Lysozyme as a Feed Additive on In vitro Rumen Fermentation and Methane Emission

  • Biswas, Ashraf A.;Lee, Sung Sill;Mamuad, Lovelia L.;Kim, Seon-Ho;Choi, Yeon-Jae;Bae, Gui-Seck;Lee, Kichoon;Sung, Ha-Guyn;Lee, Sang-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.11
    • /
    • pp.1601-1607
    • /
    • 2016
  • This study was conducted to determine the effect of lysozyme addition on in vitro rumen fermentation and to identify the lysozyme inclusion rate for abating methane ($CH_4$) production. An in vitro ruminal fermentation technique was done using a commercial concentrate to rice straw ratio of 8:2 as substrate. The following treatments were applied wherein lysozyme was added into 1 mg dry matter substrate at different levels of inclusion: Without lysozyme, 2,000, 4,000, and 8,000 U lysozyme. Results revealed that, lysozyme addition had a significant effect on pH after 24 h of incubation, with the highest pH (p<0.01) observed in 8,000 U lysozyme, followed by the 4,000 U, 2,000 U, and without lysozyme. The highest amounts of acetic acid, propionic acid (p<0.01) and total volatile fatty acid (TVFA) (p<0.05) were found in 8,000 U after 24 h of incubation. The $CH_4$ concentration was the lowest in the 8,000 U and the highest in the without lysozyme addition after 24 h of incubation. There was no significant differences in general bacteria, methanogen, or protozoan DNA copy number. So far, addition of lysozyme increased the acetate, propionate, TVFA, and decreased $CH_4$ concentration. These results suggest that lysozyme supplementation may improve in vitro rumen fermentation and reduce $CH_4$ emission.

Fermentation Characteristics and Microbial Protein Synthesis in an In Vitro System Using Cassava, Rice Straw and Dried Ruzi Grass as Substrates

  • Sommart, K.;Parker, D.S.;Rowlinson, P.;Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1084-1093
    • /
    • 2000
  • An in vitro gas production system was used to investigate the influence of various substrate mixtures on a natural mix of rumen microbes by measurement of fermentation end-products. The treatments were combinations of cassava (15.0, 30.0 and 45.0%) with different roughage sources (ruzi grass, rice straw or urea treated rice straw). Microbial biomass, net $^{15}N$ incorporation into cells, volatile fatty acid production, gas volume and rate of gas production increased linearly with increasing levels of cassava inclusion. There was also an effect of roughage source, with rice straw being associated with the lowest values for most parameters whilst similar values were obtained for ruzi grass and urea treated rice straw. The results suggest that microbial growth and fermentation rate increase as a function of readily available carbohydrate in the substrate mixture. A strong linear relationship between $^{15}N$ enrichment, total volatile fatty acid production and gas production kinetics support the suggestion of the use of the in vitro gas production system as a tool for screening feedstuffs as an initial stage of feed evaluation.

Effects of Freeze-dried Citrus Peel on Feed Preservation, Aflatoxin Contamination and In vitro Ruminal Fermentation

  • Nam, I.S.;Garnsworthy, P.C.;Ahn, Jong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.5
    • /
    • pp.674-680
    • /
    • 2009
  • The objective of this study was to investigate antimicrobial activity, during the storage period, of animal feed and any effects on in vitro rumen digestion by supplementing different levels (5.55, 11.1, and 22.2 g/kg) of freeze dried citrus peel (FDCP) to the feed compared to untreated feed and feed treated with an antifungal agent (AA) at 0.05 g/kg. In a preservation test, feed supplemented with FDCP showed no deterioration over 21 days. Untreated feed and AA-treated feed, however, showed signs of deterioration after 16 days storage. Yellow colour and red colour, measured by spectro chromameter, decreased in the untreated and AA-treated feeds, but not in feed supplemented with FDCP. Aflatoxin was detected in untreated and AA-treated feeds at 16 days (8 ppb and 2 ppb) and 21 days (8 ppb and 4 ppb), but aflatoxin was not detected in the feed supplemented with FDCP. In a second experiment, fermentation by rumen microorganisms of FDCP (22.2 g/kg) and AA (0.05 g/kg) supplemented feeds was studied in vitro. Feeds were incubated with buffered rumen fluid for 3, 6, 9, 12, 24, and 48 h. Dry matter digestibility (DMD) and organic matter digestibility (OMD) were affected by treatment, but ammonia-N, total, and individual volatile fatty acids (VFA) were not adversely affected by treatment. In conclusion, the results indicated that FDCP might be useful for inhibiting microbial growth of animal feed during storage without disrupting rumen fermentation.

Optimum Forage Sources and Its Ratio in TMR for Environmently-friendly Goat Feeding: In vitro Rumen Fermentation Study (친환경 흑염소 사양을 위한 최적 조사료 초종 및 TMR 혼합비 비율: In vitro 반추위 발효 연구)

  • Ryu, Chaehwa;Lee, Jinwook;Kim, Kwan-Woo;Lee, Sung-Soo;Bak, Hyeryeon;Jeon, Eunjeong;Park, Myungsun;Choi, Nag-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.4
    • /
    • pp.605-614
    • /
    • 2020
  • This study was conducted to investigate the effects of TMR on in vitro rumen fermentation and methane production of goat with different forage sources. The experiment was arranged 4×2 factorial design. The different forage sources were rice straw (RS), Italian rye grass (IR), timothy (TI) and alfalfa (AL), respectively. There were two different forage : concentrate ratios such as 20:80 (20) and 50:50 (50), respectively. Therefore, totally 8 treatments were used: 1) RS20, 2) RS50, 3) IR20, 4) IR50, 5) TI20, 6) TI50, 7) AL20, and 8) AL50, respectively. The rumen fluid of goat was collected from the slaughterhouse. For fermentation parameters, ruminal pH, total gas, methane, hydrogen, ammonia nitrogen, and volatile fatty acid were determined. The pH values were within an optimal range across all treatments. Total gas productions at TI20 and AL50 were significantly greater than others (p<0.05). Methane production was significantly lower in TI and AL compared with other treatments (p<0.05). The relatively high dietary NDF content in treatments showed significantly lower methane production (p<0.05). Significant alterations treatments were detected at ammonia nitrogen concentration according to the ratio of forage : concentrate (p<0.05). AL treatment showed greater total volatile fatty acid production compared with other treatments (p<0.05). Therefore, the present study suggests that both Timothy and Alfalfa could be recommendable forage sources for goat based on results with volatile fatty acid as an energy source and methane as an index for energy loss and environmental issues. Also, the 50:50 (forage : concentrate) ratio would prefer to 20:80.

Effects of Cordyceps militaris Mycelia on In vitro Rumen Microbial Fermentation

  • Yeo, Joon Mo;Lee, Shin Ja;Lee, Sang Min;Shin, Sung Hwan;Lee, Sung Hoon;Ha, Jong K.;Kim, WanYoung;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.201-205
    • /
    • 2009
  • Effects of Cordyceps militaris mycelia on rumen microbial fermentation were determined by measuring in vitro gas production, cellulose digestion and VFA concentrations. C. militaris mycelia was added to buffered rumen fluid with final concentrations of 0.00, 0.10, 0.15, 0.20, 0.25 and 0.30 g/L and incubation times were for 3, 6, 9, 12, 24, 36, 48 and 72 h. At all incubation times, the gas production showed a quadratic increase with the supplementation of C. militaris mycelia; maximum responses were seen with 0.25 g/L supplementation. However, the gas production was significantly lower for the 0.30 g/L supplementation than for the 0.25 g/L supplementation from 9 h to 72 h incubation. The cellulose filter paper (FP) digestion showed a quadratic increase, as did the gas production except at 3 h incubation. The concentration of total VFA was significantly increased by the supplementation of C. militaris mycelia compared with the control treatment; the highest response was also seen with 0.25 g/L supplementation. This was true for responses in the concentration of acetic and propionic acids. As opposed to other responses, the responses of pH to the supplementation of C. militaris mycelia showed a quadratic decrease from 3 h to 36 h incubation. In conclusion, C. militaris mycelia alter the mixed rumen microbial fermentation with increases in the production of gas and VFA, and cellulose FP digestion.

Effect of Rhodophyta extracts on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations

  • Lee, Shin Ja;Shin, Nyeon Hak;Jeong, Jin Suk;Kim, Eun Tae;Lee, Su Kyoung;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.54-62
    • /
    • 2018
  • Objective: Due to the threat of global warming, the livestock industry is increasingly interested in exploring how feed additives may reduce anthropogenic greenhouse gas emissions, especially from ruminants. This study investigated the effect of Rhodophyta supplemented bovine diets on in vitro rumen fermentation and rumen microbial diversity. Methods: Cannulated Holstein cows were used as rumen fluid donors. Rumen fluid:buffer (1:2; 15 mL) solution was incubated for up to 72 h in six treatments: a control (timothy hay only), along with substrates containing 5% extracts from five Rhodophyta species (Grateloupia lanceolata [Okamura] Kawaguchi, Hypnea japonica Tanaka, Pterocladia capillacea [Gmelin] Bornet, Chondria crassicaulis Harvey, or Gelidium amansii [Lam.] Lamouroux). Results: Compared with control, Rhodophyta extracts increased cumulative gas production after 24 and 72 h (p = 0.0297 and p = 0.0047). The extracts reduced methane emission at 12 and 24 h (p<0.05). In particular, real-time polymerase chain reaction analysis indicated that at 24 h, ciliate-associated methanogens, Ruminococcus albus and Ruminococcus flavefaciens decreased at 24 h (p = 0.0002, p<0.0001, and p<0.0001), while Fibrobacter succinogenes (F. succinogenes) increased (p = 0.0004). Additionally, Rhodophyta extracts improved acetate concentration at 12 and 24 h (p = 0.0766 and p = 0.0132), as well as acetate/propionate (A/P) ratio at 6 and 12 h (p = 0.0106 and p = 0.0278). Conclusion: Rhodophyta extracts are a viable additive that can improve ruminant growth performance (higher total gas production, lower A/P ratio) and methane abatement (less ciliateassociated methanogens, Ruminococcus albus and Ruminococcus flavefaciens and more F. succinogenes.

Comparison of Gayal (Bos frontalis) and Yunnan Yellow Cattle (Bos taurus): In vitro Dry Matter Digestibility and Gas Production for a Range of Forages

  • Xi, Dongmei;Wanapat, Metha;Deng, Weidong;He, Tianbao;Yang, Zhifang;Mao, Huaming
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1208-1214
    • /
    • 2007
  • Three male Gayal, two years of age and with a mean live weight of $203{\pm}26$ kg, and three adult Yunnan Yellow Cattle, with a mean live weight of $338{\pm}18$ kg were fed a ration of pelleted lucerne hay and used to collect rumen fluid for in vitro measurements of digestibilities and gas production from fermentation of a range of forages. The forages were: bamboo stems, bamboo twigs, bamboo leaves, rice straw, barley straw, annual ryegrass hay, smooth vetch hay and pelleted lucerne hay. There were significant (p<0.05) effects of the source of rumen fluid on in vitro dry matter digestibility (IVDMD) and gas production during fermentation of forage. For the roughage of lowest quality (bamboo stems and rice straw), gas production during fermentation was higher (p<0.05) in the presence of rumen fluid from Gayal than Yunnan Yellow Cattle. Differences for these parameters were found for the better quality roughages with gas production being enhanced in the presence of rumen fluid from Yunnan Yellow Cattle. Moreover, the IVDMD of investigated roughages was significantly higher (p<0.05) in Gayal than Yunnan Yellow Cattle. The results offer an explanation for the positive live weight gains recorded for Gayal foraging in their natural environment where the normal diet consists of poor quality roughages.