• 제목/요약/키워드: In phase mode

검색결과 2,007건 처리시간 0.031초

Direct Power Control of Three-Phase Boost Rectifiers by using a Sliding-Mode Scheme

  • Kim, Ju-Hye;Jou, Sung-Tak;Choi, Dae-Keun;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.1000-1007
    • /
    • 2013
  • This paper proposes a sliding-mode-based direct power control (DPC) method in a three-phase boost rectifier without the use of a voltage sensor. This sliding-mode-based DPC is used to improve transient-state response characteristics. This DPC can eliminate voltage sensors by calculating a voltage using a sensorless method, thus considerably reducing cost. This DPC first presents an effective algorithm that does not significantly affect the previous performance and does not need a voltage sensor. Thereafter, the effectiveness of the algorithm is verified by simulations and experiments.

병렬 엔진의 X형 진동 위상조정에 의한 디젤 발전플랜트 진동제어 (Vibration Control on the Diesel Power Plant by the Phase Adjustment of Parallel Engines' X-mode Vibration)

  • 이돈출;이병운;김용근;전효중
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.221-226
    • /
    • 1996
  • Structural vibrations of adjacent buildings, manufacturing factories and engines on the stationary diesel power plant were increased by the variation of phase angle between two engines sometimes. In this paper, top bracings and synchrophaser have been introduced in order to reduce these vibrations. As a result, all of structural vibrations were greatly improved by the phase adjustment of 6th order X-mode vibration with these.

  • PDF

Dual Frequency Switchable Flexoelectric Cholesteric Devices

  • Chien, Liang-Chy;Shi, Lei
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.I
    • /
    • pp.105-108
    • /
    • 2005
  • We demonstrate an electro-optical device based on the flexoelectric effect of a short-pitched cholesteric liquid crystal. By using a dual-frequency switchable nematic, a small amount of chiral dopant and a small amount of phase-separated polymer localized on the surface, we were able to create a device that operates in amplitude (flexoelectric) and phase(dielectric) modes. At high frequency the dual frequency liquid crystal suppresses the phase mode at higher voltage, which improves the switching speed, and thereby preserving the in-plane-switching mode.

  • PDF

Structural characteristics and properties of phase singularities in optical fibers

  • Lim, Dong-Sung;Lee, Ei-Hang
    • Journal of the Optical Society of Korea
    • /
    • 제1권2호
    • /
    • pp.81-89
    • /
    • 1997
  • The formation of phase singularities in optical fibers is theoretically and experimentally investigated. In particular, their structural characteristics and properties are discussed in relation to guided mode patterns. It is found that except for the fundamental linearly polarized(LP) modes, all the mixed modes displayed phase singularities in the transverse plane. The results in the few mode fiber show that superposition of the LP even and odd modes produces isolated dark points and phase singularities. Phase singularities are found to be of the screw type and of first order. The number of phase singularities linearly increases with the number of guided modes.

Direct Time-domain Phase Correction of Dual-comb Interferograms for Comb-resolved Spectroscopy

  • Lee, Joohyung
    • Current Optics and Photonics
    • /
    • 제5권3호
    • /
    • pp.289-297
    • /
    • 2021
  • We describe a comb-mode resolving spectroscopic technique by direct time-domain phase correction of unstable interferograms obtained from loosely locked two femtosecond lasers. A low-cost continuous wave laser and conventional repetition rate stabilization method were exploited for locking carrier and envelope phase of interferograms, respectively. We intentionally set the servo control at low bandwidth, resulting in severe interferograms' fluctuation to demonstrate the capability of the proposed correction method. The envelope phase of each interferogram was estimated by a quadratic fit of carrier peaks to correct timing fluctuation of interferograms in the time domain. After envelope phase correction on individual interferograms, we successfully demonstrated 1 Hz linewidth of RF comb-mode over 200 GHz optical spectral-bandwidth with 10-times signal-to-noise ratio (SNR) enhancement compared to the spectrum without correction. Besides, the group delay difference between two femtosecond pulses is successfully estimated through a linear slope of phase information.

Flux Sliding-mode Observer Design for Sensorless Control of Dual Three-phase Interior Permanent Magnet Synchronous Motor

  • Shen, Jian-Qing;Yuan, Lei;Chen, Ming-Liang;Xie, Zhen
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1614-1622
    • /
    • 2014
  • A novel equivalent flux sliding-mode observer (SMO) is proposed for dual three-phase interior permanent magnet synchronous motor (DT-IPMSM) drive system in this paper. The DT-IPMSM has two sets of Y-connected stator three-phase windings spatially shifted by 30 electrical degrees. In this method, the sensorless drive system employs a flux SMO with soft phase-locked loop method for rotor speed and position estimation, not only are low-pass filter and phase compensation module eliminated, but also estimation accuracy is improved. Meanwhile, to get the regulator parameters of current control, the inner current loop is realized using a decoupling and diagonal internal model control algorithm. Experiment results of 2MW-level DT-IPMSM drives system show that the proposed method has good dynamic and static performances.

Design and Stability Analysis of a Fuzzy Adaptive SMC System for Three-Phase UPS Inverter

  • Naheem, Khawar;Choi, Young-Sik;Mwasilu, Francis;Choi, Han Ho;Jung, Jin-Woo
    • Journal of Power Electronics
    • /
    • 제14권4호
    • /
    • pp.704-711
    • /
    • 2014
  • This paper proposes a combined fuzzy adaptive sliding-mode voltage controller (FASVC) for a three-phase UPS inverter. The proposed FASVC encapsulates two control terms: a fuzzy adaptive compensation control term, which solves the problem of parameter uncertainties, and a sliding-mode feedback control term, which stabilizes the error dynamics of the system. To extract precise load current information, the proposed method uses a conventional load current observer instead of current sensors. In addition, the stability of the proposed control scheme is fully guaranteed by using the Lyapunov stability theory. It is shown that the proposed FASVC can attain excellent voltage regulation features such as a fast dynamic response, low total harmonic distortion (THD), and a small steady-state error under sudden load disturbances, nonlinear loads, and unbalanced loads in the existence of the parameter uncertainties. Finally, experimental results are obtained from a prototype 1 kVA three-phase UPS inverter system via a TMS320F28335 DSP. A comparison of these results with those obtained from a conventional sliding-mode controller (SMC) confirms the superior transient and steady-state performances of the proposed control technique.

탄성체로 인한 탄성파의 공명산란 (ELASTIC WAVE RESONANCE SCATTERING FROM AN ELASTIC CYLINDER)

  • 이희남
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.833-838
    • /
    • 2003
  • The problem of elastic wave resonance scattering from elastic targets is studied in this paper. A new resonance formalism to extract the elastic resonance information of the target from scattered elastic waves is introduced. The proposed resonance formalism is an extension of the works developed for acoustic wave scattering problems by the author. The classical resonance scattering theory computes reasonable magnitude information of the resonances in each partial wave, but the phase behaves in somewhat irregular way, therefore, is not clearly explainable. The proposed method is developed to obtain physically meaningful magnitude and phase of the resonances. As an example problem, elastic wave scattering from an infinitely-long elastic cylinder was analyzed by the proposed method and compared to the results by RST. In case of no mode conversion, both methods generate identical magnitude. However, the new method computes exact $\pi$ radian phase shills through resonances and anti-resonances while RST produces physically unexplainable phases. In case of mode conversion, in addition to the phase even magnitudes are different. The phase shifts through resonances and antiresonances obtained by the proposed method are not exactly $\pi$ radians due to energy leak by mode conversion. But, the phases by the proposed method show reasonable and intuitively correct behavior compared to those by RST.

  • PDF

A study on the Nonlinear Normal Mode Vibration Using Adelphic Integral

  • Huinam Rhee;Kim, Jeong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1922-1927
    • /
    • 2003
  • Nonlinear normal mode (NNM) vibration, in a nonlinear dual mass Hamiltonian system, which has 6$\^$th/ order homogeneous polynomial as a nonlinear term, is studied in this paper. The existence, bifurcation, and the orbital stability of periodic motions are to be studied in the phase space. In order to find the analytic expression of the invariant curves in the Poincare Map, which is a mapping of a phase trajectory onto 2 dimensional surface in 4 dimensional phase space, Whittaker's Adelphic Integral, instead of the direct integration of the equations of motion or the Birkhoff-Gustavson (B-G) canonical transformation, is derived for small value of energy. It is revealed that the integral of motion by Adelphic Integral is essentially consistent with the one obtained from the B-G transformation method. The resulting expression of the invariant curves can be used for analyzing the behavior of NNM vibration in the Poincare Map.

공간전압벡터 PWM을 이용한 컨버터/인버터 시스템에서의 커먼 모드 전압 펄스 제거 (Elimination of a Common Mode Voltage Pulse in Converter/Inverter System Modifying Space-Vector PWM Method)

  • 이현동;이영민;설승기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권2호
    • /
    • pp.89-96
    • /
    • 1999
  • This paper proposes a common-mode voltage reduction method base on SVPWM(Space-Vector Pulsewidth Modulation) in three phase PWM converter/inverter system. By shifting the active voltage vector of inverter and aligning this to the active vector of converter, it is possible to eliminate a common-mode voltage pulse in one control period. Since the proposed PWM method maintains the active voltage vector, it does not affect the control performance of PWM converter/inverter system. Without any extra hardware, overall common mode voltage dv/dt and conrresponding leakage current can be reduced to two-third of the conventional three phase symmetric SVPWM scheme.

  • PDF