• 제목/요약/키워드: In Vitro Degradability

검색결과 94건 처리시간 0.119초

Effect of Tannins in Acacia nilotica, Albizia procera and Sesbania acculeata Foliage Determined In vitro, In sacco, and In vivo

  • Alam, M.R.;Amin, M.R.;Kabir, A.K.M.A.;Moniruzzaman, M.;McNeill, D.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권2호
    • /
    • pp.220-228
    • /
    • 2007
  • The nutritive value and the effect of tannins on the utilization of foliage from three commonly used legumes, Acacia nilotica, Albizia procera, and Sesbania acculeata, were determined. Three mature rumen-fistulated bullocks were used to study in sacco degradability and twelve adult sheep were randomly allocated on the basis of live weight to 4 groups of 3 in each to study the in vivo digestibility of the foliages. In all foliages, the contents of crude protein (17 to 24% of DM) were high. Fibre was especially high in Albizia (NDF 58.8% of DM vs. 21% in Sesbania and 15.4% in Acacia). Contents of both hydrolysable (4.4 to 0.05%) and condensed tannins (1.2 to 0.04%) varied from medium to low in the foliages. Acacia contained the highest level of total phenolics (20.1%), protein precipitable phenolics (13.2%) and had the highest capacity to precipitate protein (14.7%). Drying in shade reduced the tannin content in Acacia and Albizia by 48.6 and 69.3% respectively. The foliages ranked similarly for each of the different methods used to estimate tannin content and activity. Acacia and Sesbania foliage was highly degradable (85-87% potential degradability of DM in sacco), compared to Albizia (52%), indicating a minimal effect of tannins in Acacia and Sesbania. Yet, in vitro, the tannins in the Acacia inhibited microbial activity more than those in Albizia and Sesbania. Following the addition of polyethylene glycol to neutralise the tannins, gas production and microbial growth increased by 59% and 0.09 mg RNA equiv./dg microbial yield respectively in the Acacia, compared to 16-17% and 0.06 mg RNA equiv./dg microbial yield in the other foliages. There was a trend for low in vivo apparent digestibility of N in the Acacia (43.2%) and Albizia (44.2%) compared to the Sesbania (54.5%) supplemented groups. This was likely to be due to presence of tannins. Consistent with this was the low N retention (0.22 and 0.19 g N/g NI) in sheep supplemented with Acacia and Albizia compared to that for the Sesbania (0.32). Similarly, a trend for poor microbial N yield was observed in sheep fed these foliages. Across the foliages tested, an increase in tannin content was associated with a reduction in ruminal fermentation, N digestibility and N retention. For overall nutritive value, Sesbania proved to be the superior forage of the three tested.

Effects of rumen-protected amino acid prototypes on rumen fermentation characteristics in vitro

  • Gyeongjin, Kim;Tabita Dameria, Marbun;Jinhyun, Park;Sang Moo, Lee;Hong Gu, Lee;Jun Ok, Moon;Jin Seung, Park;Eun Joong, Kim
    • 농업과학연구
    • /
    • 제48권4호
    • /
    • pp.669-679
    • /
    • 2021
  • This study was conducted to evaluate the effects of rumen-protected amino acid (RPAA) prototypes, which were chemically synthesized, on in vitro rumen fermentation and protection rate outcomes. Several RPAA prototypes were incubated with timothy hay and concentrate. Treatments consisted of 1) control (CON; no RPAA prototype supplement), and prototypes of 2) 0.5% RP-methionine (RPMet), 3) 0.5% RP-tryptophan (RPTrp), 4) 0.5% RP-valine (RPVal), 5) 0.5% RP-phenylalanine (RPPhe), 6) 0.5% RP-leucine (RPLeu), 7) 0.5% RP-histidine (RPHis), 8) 20% RPMet, and 9) 20% RPTrp (w·w-1 feed). The inoculum (50 mL) prepared with rumen fluid and McDougall's buffer (1 : 4) was dispensed in individual serum bottles and was anaerobically incubated for 0, 6, and 24 h at 39℃ in triplicate. The dry matter degradability did not differ among the groups, except for the 20% RPMet and the 20% RPTrp treatments at 6 and 24 h. The total volatile fatty acid concentration in the 20% RPMet was higher (p < 0.05) than the rest of the groups at 6 h, and 20% RPMet showed the highest molar proportion of acetate, whereas the lowest proportion of propionate was found at 6 h (p < 0.05). The protection rate of the RPAA prototypes ranged from 29.85 to 109.21%. at 24 h. In conclusion, the chemically synthesized RPAA prototypes studied here had no detrimental effects on rumen fermentation parameters. Further studies using animal models are needed for more accurate evaluations of the effectiveness of RPAA.

A lower cost method of preparing corn stover for Irpex lacteus treatment by ensiling with lactic acid bacteria

  • Zuo, Sasa;Jiang, Di;Niu, Dongze;Zheng, Mingli;Tao, Ya;Xu, Chuncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권8호
    • /
    • pp.1273-1283
    • /
    • 2020
  • Objective: This study investigated a method of preparing corn stover for Irpex lacteus (I. lacteus) treatment to improve its in vitro rumen degradability under non-sterile conditions. Methods: Corn stover was inoculated with Lactobacillus plantarum (L. plantarum), Lactobacillus buchneri (L. buchneri), and an equal mixture of these strains, and ensiled for 0, 3, 7, 14, and 28 days. After each period, a portion of the silage was sampled to assess the silage quality, and another portion of the silage was further treated with I. lacteus at 28℃ for 28 d. All the samples were analyzed for fermentation quality, chemical composition, and in vitro gas production (IVGP) as a measure of rumen fermentation capacity. Results: Lactic acid bacteria (LAB) was found to improve the silage quality of the corn stover, and the corn stover silage inoculated with L. plantarum produced more lactic acid and higher IVGP than other silage groups. The I. lacteus colonies flourished in the early stage of corn stover silage, especially on the 3-d corn stover silage inoculated with both L. plantarum and L. buchneri. This led to an 18% decrease in the acid detergent lignin content, and a 49.6% increase in IVGP compared with the raw stover. Conclusion: The combination of ensiling with the mixed LAB inoculation and I. lacteus treatment provided a cost-effective method for the improvement of the IVGP of corn stover from 164.8 mL/g organic matter (OM) to 246.6 mL/g OM.

옥수수 알곡의 가공처리에 의한 영양소 이용성 향상에 관한 연구 I. 한우에 있어서 옥수수 알곡의 가공처리가 In situ 및 In vitro 소화율에 미치는 영향 (Studies on the Improvement of Utility Value of Corn Grains by Different Processing Methods I. Effects of Different Corn Processing Methods on In situ and In vitro Digestibilities in Hanwoo)

  • 김완영;김홍욱;이장형
    • 현장농수산연구지
    • /
    • 제3권1호
    • /
    • pp.116-131
    • /
    • 2001
  • 옥수수 알곡(whole corn)을 분쇄(ground corn; GC), 파쇄(cracked corn; CC), 박편(flaked corn; FC) 및 수침(soaked corn; SC)등 가공방법을 달리하여 처리하였을 때 반추가축에 대한 in situ 및 in vitro 소화율에 미치는 영향을 구명하고자 본 연구를 수행하였다. 실험 1 : 옥수수 알곡의 가공방법이 건물, 유기물 및 조단백질의 반추위내 in situ 소실율에 미치는 영향 1. 반추위내의 건물, 유기물 및 조단백질의 반추위내 소실율을 관찰하고자 반추위 누관이 장착된 한우 4두를 공시하여 nylon bag 기법으로 0, 2, 6, 12, 24 및 48시간 반추위내에서 각 가공된 옥수수를 배양시켰다. 2. 반추위 배양시간 48시간대에서 분쇄옥수수가 76.1 %로 가장 높은 건물소실율을 보였으며(P<0.01) 다음으로 파쇄 옥수수 (55.1%) 그리고 박편 처리 옥수수 (30.9%)의 순으로 소실율이 높았으며 알곡 옥수수와 수침 옥수수의 경우는 약 12%로 48시간 이후에도 거의 소실이 되지 않음이 관찰되었다. 3. 조단백질의 소실율은 반추위 발효시간 48시간대에서 분쇄 및 파쇄 옥수수의 단백질 소실율이 각각 48 및 38%로 가장 높았지만(P<0.01), 박편 옥수수는 건물 소실율과는 달리 단백질 소실율이 18.9%로써 알곡과 수침 옥수수와 비슷하게 나타났다. 0시간대의 단백질 소실율은 분쇄 옥수수가 소실율이 16.14%로 가장 높았다(P<0.01). 4. 유기물의 소실율은 반추위 발효시간 48시간대에서 분쇄 옥수수가 76.04%로 가장 높았으며(P<0.01) 그 다음이 옥수수를 파쇄한 경우 54.64%였으며 옥수수 알곡과 수침 옥수수가 각각 11.82 및 12.26%로 가장 소실율이 낮았다(P<0.01). 0시간대 소실율은 분쇄와 파쇄 옥수수에서 소실율이 각각 20.27과 18.86%로 가장 높았다(P<0.01). 실험 2 : 옥수수 알곡의 가공방법이 반추위내 미생물에 의한 건물 분해을 및 two-stage in vitro 건물 소화율에 미치는 영향 1. 옥수수 알곡의 가공방법에 의한 반추위내 미생물들의 건물 분해율을 측정하기 위하여 한우로부터 반추위액을 채취하고 미생물을 분리하여 각 사료기질을 0, 2, 6, 12, 24 및 48시간 미생물과 함께 배양시켰다. 48시간 동안 반추위 미생물에 배양시 분쇄 옥수수의 분해율 (65.01%)이 가장 높았다(P<0.01). 옥수수 알곡과 수침 옥수수를 48시간 배양시 건물분해율은 각각 18.83 과 17.26%로 처리구중 가장 낮은 분해율을 보였다 (P<0.01). 2. 한우로부터 분리한 반추위액에 각 사료기질을 two-stage 배양법으로 배양하여 건물 소화율을 측정하였다. 무처리 옥수수가 가장 낮은 소화율 (15.36%)을 보였고(P<0.01), 분쇄, 파쇄 및 박편 옥수수에서 높은 소화율을 보였으며(P<0.01) 각각 86.95, 85.84 및 82.29%로 나타났다.

Metabolisable Energy, In situ Rumen Degradation and In vitro Fermentation Characteristics of Linted Cottonseed Hulls, Delinted Cottonseed Hulls and Cottonseed Linter Residue

  • Bo, Y.K.;Yang, H.J.;Wang, W.X.;Liu, H.;Wang, G.Q.;Yu, X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권2호
    • /
    • pp.240-247
    • /
    • 2012
  • Dietary supplementation with conventional linted cottonseed hulls (LCSH) is a common practice in livestock production all over the world. However, supplementation with mechanically delinted cottonseed hulls (DCSH) and cottonseed linter residue (CLR) is uncommon. Cottonseed by-products, including LCSH, DCSH and CLR, were assessed by chemical analysis, an in situ nylon bag technique, an in vitro cumulative gas production technique and in vitro enzyme procedure. The crude protein (CP) content of CLR (302 g/kg dry matter (DM)) was approximately 3 times that of LCSH and 5 times that of DCSH. The crude fat content was approximately 3 times higher in CLR (269 g/kg DM) than in LCSH and 4 times higher than in DCSH. Neutral detergent fibre (311 g/kg DM) and acid detergent fibre (243 g/kg DM) contents of CLR were less than half those of DCSH or LCSH. Metabolisable energy, estimated by in vitro gas production and chemical analyses, ranked as follows: CLR (12.69 kJ/kg DM)>LCSH (7.32 kJ/kg DM)>DCSH (5.82 kJ/kg DM). The in situ degradation trial showed that the highest values of effective degradability of DM and CP were obtained for CLR (p<0.05). The in vitro disappearance of ruminal DM ranked as follows: CLR>LCSH>DCSH (p<0.05). The lowest digestibility was observed for DCSH with a two-step in vitro digestion procedure (p<0.05). The potential gas production in the batch cultures did not differ for any of the three cottonseed by-product feeds. The highest concentration of total volatile fatty acids was observed in CLR after a 72 h incubation (p<0.05). The molar portions of methane were similar between all three treatments, with an average gas production of 22% (molar). The CLR contained a higher level of CP than did LCSH and DCSH, and CLR fermentation produced more propionate. The DCSH and LCSH had more NDF and ADF, which fermented into greater amounts of acetate.

Effects of Defaunation on Fermentation Characteristics and Methane Production by Rumen Microbes In vitro When Incubated with Starchy Feed Sources

  • Qin, W.Z.;Li, C.Y.;Kim, J.K.;Ju, J.G.;Song, Man-K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권10호
    • /
    • pp.1381-1388
    • /
    • 2012
  • An in vitro experiment was conducted to examine the effects of defaunation (removal of protozoa) on ruminal fermentation characteristics, $CH_4$ production and degradation by rumen microbes when incubated with cereal grains (corn, wheat and rye). Sodium lauryl sulfate as a defaunation reagent was added into the culture solution at a concentration of 0.000375 g/ml, and incubated anaerobically for up to 12 h at $39^{\circ}C$. Following defaunation, live protozoa in the culture solution were rarely observed by microscopic examination. A difference in pH was found among grains regardless of defaunation at all incubation times (p<0.01 to 0.001). Defaunation significantly decreased pH at 12 h (p<0.05) when rumen fluid was incubated with grains. Ammonia-N concentration was increased by defaunation for all grains at 6 h (p<0.05) and 12 h (p<0.05) incubation times. Total VFA concentration was increased by defaunation at 6 h (p<0.05) and 12 h (p<0.01) for all grains. Meanwhile, defaunation decreased acetate and butyrate proportions at 6 h (p<0.05, p<0.01) and 12 h (p<0.01, p<0.001), but increased the propionate proportion at 3 h, 6 h and 12 h incubation (p<0.01 to 0.001) for all grains. Defaunation increased in vitro effective degradability of DM (p<0.05). Production of total gas and $CO_2$ was decreased by defaunation for all grains at 1 h (p<0.05, p<0.05) and then increased at 6 h (p<0.05, p<0.05) and 12 h (p<0.05, p<0.05). $CH_4$ production was higher from faunation than from defaunation at all incubation times (p<0.05).

Essential oil mixture on rumen fermentation and microbial community - an in vitro study

  • Kim, Hanbeen;Jung, Eunsang;Lee, Hyo Gun;Kim, Byeongwoo;Cho, Seongkeun;Lee, Seyoung;Kwon, Inhyuk;Seo, Jakyeom
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권6호
    • /
    • pp.808-814
    • /
    • 2019
  • Objective: The objective of this study was to investigate the effects of essential oil mixture (EOM) supplementation on rumen fermentation characteristics and microbial changes in an in vitro. Methods: Three experimental treatments were used: control (CON, no additive), EOM 0.1 (supplementation of 1 g EOM/kg of substrate), and EOM 0.2 (supplementation of 2 g EOM/kg of substrate). An in vitro fermentation experiment was carried out using strained rumen fluid for 12 and 24 h incubation periods. At each time point, in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (IVNDFD), pH, ammonia nitrogen ($NH_3-N$), and volatile fatty acid (VFA) concentrations, and relative microbial diversity were estimated. Results: After 24 h incubation, treatments involving EOM supplementation led to significantly higher IVDMD (treatments and quadratic effect; p = 0.019 and 0.008) and IVNDFD (linear effect; p = 0.068) than did the CON treatment. The EOM 0.2 supplementation group had the highest $NH_3-N$ concentration (treatments; p = 0.032). Both EOM supplementations did not affect total VFA concentration and the proportion of individual VFAs; however, total VFA tended to increase in EOM supplementation groups, after 12 h incubation (linear; p = 0.071). Relative protozoa abundance significantly increased following EOM supplementation (treatments, p<0.001). Selenomonas ruminantium and Ruminococcus albus (treatments; p<0.001 and p = 0.005), abundance was higher in the EOM 0.1 treatment group than in CON. The abundance of Butyrivibrio fibrisolvens, fungi and Ruminococcus flavefaciens (treatments; p<0.001, p<0.001, and p = 0.005) was higher following EOM 0.2 treatment. Conclusion: The addition of newly developed EOM increased IVDMD, IVNDFD, and tended to increase total VFA indicating that it may be used as a feed additive to improve rumen fermentation by modulating rumen microbial communities. Further studies would be required to investigate the detailed metabolic mechanism underlying the effects of EOM supplementation.

Biological Affinity and Biodegradability of Poly(propylene carbonate) Prepared from Copolymerization of Carbon Dioxide with Propylene Oxide

  • Kim, Ga-Hee;Ree, Moon-Hor;Kim, Hee-Soo;Kim, Ik-Jung;Kim, Jung-Ran;Lee, Jong-Im
    • Macromolecular Research
    • /
    • 제16권5호
    • /
    • pp.473-480
    • /
    • 2008
  • In this study we investigated bacterial and cell adhesion to poly(propylene carbonate) (PPC) films, that had been synthesized by the copolymerization of carbon dioxide (a global warming chemical) with propylene oxide. We also assessed the biocompatibility and biodegradability of the films in vivo, and their oxidative degradation in vitro. The bacteria adhered to the smooth, hydrophobic PPC surface after 4 h incubation. Pseudomonas aeruginosa and Enterococcus faecalis had the highest levels of adhesion, Escherichia coli and Staphylococcus aureus had the lowest levels, and Staphylococcus epidermidis was intermediate. In contrast, there was no adhesion of human cells (cell line HEp-2) to the PPC films, due to the hydrophobicity and dimensional instability of the surface. On the other hand, the PPC films exhibited good biocompatibility in the mouse subcutaneous environment. Moreover, contrary to expectation the PPC films degraded in the mouse subcutaneous environment. This is the first experimental confirmation that PPC can undergo surface erosion biodegradation in vivo. The observed biodegradability of PPC may have resulted from enzymatic hydrolysis and oxidative degradation processes. In contrast, the PPC films showed resistance to oxidative degradation in vitro. Overall, PPC revealed high affinity to bioorganisms and also good bio-degradability.

독시사이클린 나노입자가 함유된 치주용 키토산 스트립의 제조 및 특성 (Preparation and Characterization of Periodontal Chitosan Strip Containing Doxycycline Nanoparticle)

  • 송경숙;양재헌;김영일;정규호
    • Journal of Pharmaceutical Investigation
    • /
    • 제31권4호
    • /
    • pp.233-239
    • /
    • 2001
  • Local drug delivery by using biocompatible polymers has been developed in the treatment of periodontitis for many years. In the field of dental therapy, doxycycline is usually a first choice because of its broad-spectrum antibiotic activity. The strip releases antibiotics for a week, and the polymer should be degradable after a week. In this study, we prepared and evaluated the chitosan strips and nanoparticle strips containing doxycycline hydrochloride, and studied their antiacterial activity, dissoultion, and degrability in vitro. The weight of cast strip containing a 5 mg of doxycycline hydrochloride and a 45 mg of chitosan polymer was $57.67{\pm}0.17\;mg$. The release rate of doxycycline hydrochloride from the strip was measured by HPLC. The drug released from chitosan strip and nanoparticle strip was shown to be $50\;{\mu}g/mL$ in first 24 hours. In antibacterial test showed growth inhibitory activity after 24 hrs anaerobic incubation. In vitro degradability showed demolished weight of $93.74{\pm}0.08%$ chitosan strip, $82.48{\pm}1.29%$ chitosan nanoparticle strip, $2.47{\pm}1.99%$ polycarprolactione strip (control). These results showed that, with this doxycycline hydrochloride strip, it is feasible to obtain a sustained release of the drug within the periodontal pocket for seven days which may be improve for local drug delivery system for treatment of periodontal disease.

  • PDF

혐기성 미생물로 제조한 synbiotics 혼합배양물의 첨가가 발효 TMR의 발효특성과 소실률에 미치는 영향 (Effects of Supplementation of Synbiotic Co-cultures Manufactured with Anaerobic Microbes on In Vitro Fermentation Characteristics and In Situ Degradability of Fermented TMR)

  • 이신자;신년학;현종환;강태원;안정준;정호식;문여황;이성실
    • 생명과학회지
    • /
    • 제19권11호
    • /
    • pp.1538-1546
    • /
    • 2009
  • 본 연구는 혐기성 박테리아, 곰팡이 및 효모로 제조한 synbiotics 혼합 배양물을 TMR 제조 시에 접종하여 발효기간에 따른 반추위 in vitro 발효특성과 in situ 분해율에 미치는 영향을 조사하고자 수행되었다. 처리구는 무처리구(Control), 곰팡이와 박테리아로 제조한 synbiotic 첨가구(T1), 곰팡이와 효모로 제조한 synbiotic첨가구(T2), 그리고 박테리아와 효모로 제조한 synbiotic 첨가구(T3)로 나누어, 6회의 발효기간(1, 3, 5, 7, 14 및 21일)에 따라 처리당 3반복으로 총 72개의 F-TMR (4처리 $\times$ 6회 $\times$ 3반복)을 제조하였다. In situ시험은 반추위 누관이 장착된 Holstein (평균체중 550 kg) 젖소 2두를 사용하여 4처리의 F-TMR을 반추위내에서 현수시간별(1, 3, 6, 9, 18, 24, 48 및 72 시간)로 각각 3반복하여 두당 96개의 nylon bag (4 처리 $\times$ 8 발효시간 $\times$ 3반복)을 제조하였다. 발효기간에 따른 TMR의 온도변화는 발효기간이 진행됨에 따라 높아지는 경향 이었으며, pH는 4.39~4.98범위로서 발효기간이 진행됨에 따라 감소되는 경향이었으며, 각 발효시간대별로는 대조구에서 높았고, synbiotics 처리구에서 낮게 나타났다(p<0.05). F-TMR의 암모니아 농도는 발효 7일째까지는 처리간 차이가 없었으나 14일째 이후에는 대조구에 비해 박테리아와 효모를 첨가한 synbiotics인 T3구에서 가장 낮았다(p<0.05). Lactic acid 함량은 발효 1일째에 T3구에서 가장 낮았으나 다른 발효시간대에서는 처리간 차이가 없었다. 발효기간별 F-TMR의 미생물 성장률(OD값)은 각 발효시간대별로 처리간에 차이가 없었으며, 발효기간 7일째에 정점을 나타낸 이후로 점차 감소하는 경향이었다. In situ 건물 소실률은 발효초기인 1~3시간대에 곰팡이와 박테리아 synbiotics 첨가구인 T1구가 대조구에 비해 건물소실율이 높았으나, 발효 48시간대에는 오히려 대조구에서 건물소실율이 가장 높았다(p<0.05). 다른 발효시간대의 건물 소실율과 유효분해도는 처리간 차이가 없었으며, NDF와 ADF소실율은 건물 소실율의 결과와 비슷하였다. 결론적으로 발효의 척도가 되는 pH와 lactic acid 함량은 synbiotics 첨가구가 대조구에 비해 좋은 결과를 나타내었으며, in situ 시험에서 발효초기에 건물과 섬유소 소실율이 곰팡이와 박테리아를 조합한 synbiotics구에서 높게 나타났으나 유효 분해도에서는 차이가 거의 나타나지 않아 처리효과가 미흡한 것으로 조사되었다.