• 제목/요약/키워드: In Situ Composite

검색결과 278건 처리시간 0.026초

상압소결(常壓燒結)한 SiC-$ZrB_2$ 전도성(電導性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響) (Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive Ceramic Composites)

  • 신용덕;주진영;고태헌;이정훈
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.2015-2022
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressurless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6 : 4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of $8\;{\sim}\;20$[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.02[%], 81.58[MPa], 31.44[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from $\beta$-SiC into $\alpha$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of $3.l4{\times}10^{-2}{\Omega}{\cdot}cm$ for $SiC-ZrB_2$ composite added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at 700[$^{\circ}C$]. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all negative temperature coefficient resistance (NTCR) in the temperature ranges from room temperature to 700[$^{\circ}C$]. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.

Preparation and characterization of nanoflake composite multi core-shell SrFe12O19/Fe3O4/PEG/PPy

  • Hosseini, Seyed Hossein;Majidpour diz, Mohammad
    • Advances in materials Research
    • /
    • 제1권2호
    • /
    • pp.161-168
    • /
    • 2012
  • Nanoflake composite multi core-shell $SrFe_{12}O_{19}/Fe_3O_4$/PEG/Polypyrrole was synthesized by in situ polymerization method. In this paper, the fabrication of $SrFe_{12}O_{19}$ nanoflake is as first core by solgel method. Then fabricated a shell layer from magnetic nanoparticles of $Fe_3O_4$, which synthesized by coprecipitation technique, onto the $SrFe_{12}O_{19}$ nanoflake. Polyethylene glycol (PEG) as a polymer layer and as second shell was coated onto the before core-shell. Than core-shell $SrFe_{12}O_{19}/Fe_3O_4$/PEG was used as template for the preparation of $SrFe_{12}O_{19}/Fe_3O_4$/PEG/Polypyrrole composite. Final composite has a conductive property among $4.23{\times}10^{-2}Scm^{-1}$ and magnetic property about $M_s$=2.99 emu/g. Also final composite in soluble at organic solvent such as DMF and DMSO and has a flake structure. Conductivity and magnetic property respectively determine by four-probe instrument and vibrant sample magnetometer (VSM), morphology and article size determined by FE-SEM, TEM and XRD.

Nanodispersion-Strengthened Metallic Materials

  • Weissgaerber, Thomas;Sauer, Christa;Kieback, Bernd
    • 한국분말재료학회지
    • /
    • 제9권6호
    • /
    • pp.441-448
    • /
    • 2002
  • Dispersions of non-soluble ceramic particles in a metallic matrix can enhance the strength and heat resistance of materials. With the advent of mechanical alloying it became possible to put the theoretical concept into practice by incorporating very fine particles in a flirty uniform distribution into often oxidation- and corrosion- resistant metal matrices. e.g. superalloys. The present paper will give an overview about the mechanical alloying technique as a dry, high energy ball milling process for producing composite metal powders with a fine controlled microstructure. The common way is milling of a mixture of metallic and nonmetallic powders (e.g. oxides. carbides, nitrides, borides) in a high energy ball mill. The heavy mechanical deformation during milling causes also fracture of the ceramic particles to be distributed homogeneously by further milling. The mechanisms of the process are described. To obtain a homogeneous distribution of nano-sized dispersoids in a more ductile matrix (e.g. aluminium-or copper based alloys) a reaction milling is suitable. Dispersoid can be formed in a solid state reaction by introducing materials that react with the matrix either during milling or during a subsequent heat treatment. The pre-conditions for obtaining high quality materials, which require a homogeneous distribution of small dis-persoids, are: milling behaviour of the ductile phase (Al, Cu) will be improved by the additives (e.g. graphite), homogeneous introduction of the additives into the granules is possible and the additive reacts with the matrix or an alloying element to form hard particles that are inert with respect to the matrix also at elevated temperatures. The mechanism of the in-situ formation of dispersoids is described using copper-based alloys as an example. A comparison between the in-situ formation of dispersoids (TiC) in the copper matrix and the milling of Cu-TiC mixtures is given with respect to the microstructure and properties, obtained.

Flexural Behavior of Continuous Composite Bridges with Precast Concrete Decks

  • Chung, Chul-Hun
    • 콘크리트학회논문집
    • /
    • 제15권4호
    • /
    • pp.625-633
    • /
    • 2003
  • For the construction of open-topped steel box girder bridges, prefabricated concrete slab could offer several advantages over cast-in-situ deck including good quality control, fast construction, and elimination of the formwork for concrete slab casting. However, precast decks without reinforcements at transverse joints between precast slabs should be designed to prevent the initiation of cracking at the joints, because the performance of the joint is especially crucial for the integrity of a structural system. Several prestressing methods are available to introduce proper compression at the joints, such as internal tendons, external tendons and support lowering after shear connection. In this paper, experimental results from a continuous composite bridge model with precast decks are presented. Internal tendons and external tendons were used to prevent cracking at the joints. Judging from the tests, precast decks in negative moment regions have the whole contribution to the flexural stiffness of composite section under service loads if appropriate prestressing is introduced. The validity of the calculation of a cracking load fur serviceability was presented by comparing an observed cracking load and the calculated value. Flexural behavior of the continuous composite beam with external prestressing before and after cracking was discussed by using the deflection and strain data.

Fabrication of Fe-TiB2 Composite Powder by High-Energy Milling and Subsequent Reaction Synthesis

  • Khoa, H.X.;Tuan, N.Q.;Lee, Y.H.;Lee, B.H.;Viet, N.H.;Kim, J.S.
    • 한국분말재료학회지
    • /
    • 제20권3호
    • /
    • pp.221-227
    • /
    • 2013
  • $TiB_2$-reinforced iron matrix composite (Fe-$TiB_2$) powder was in-situ fabricated from titanium hydride ($TiH_2$) and iron boride (FeB) powders by the mechanical activation and a subsequent reaction. Phase formation of the composite powder was identified by X-ray diffraction (XRD). The morphology and phase composition were observed and measured by field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. The results showed that $TiB_2$ particles formed in nanoscale were uniformly distributed in Fe matrix. $Fe_2B$ phase existed due to an incomplete reaction of Ti and FeB. Effect of milling process and synthesis temperature on the formation of composite were discussed.

나노 준결정상으로 강화된 Ti계 벌크 비정질기지 복합재의 제조 및 기계적 특성 고찰 (Fabrication and Mechanical Properties of Nanoquasicrystalline Phase Reinforced Ti-based Bulk Metallic Glass Matrix Composites)

  • 박진만;임가람;김태응;손성우;김도향
    • 한국주조공학회지
    • /
    • 제28권6호
    • /
    • pp.261-267
    • /
    • 2008
  • In-situ quasicrystalline icosahedral (I) phase reinforced Ti-based bulk metallic glass (BMG) matrix composites have been successfully fabricated by using two distinct thermal histories for BMG forming alloy. The BMG composite containing micron-scale Iphase has been introduced by controlling cooling rate during solidification, whereas nano-scale I-phase reinforced BMG composite has been produced by partial crystallization of BMG. For mechanical properties, micron-scale I-phase distributed BMG composite exhibited lower strength and plasticity compared to the monolithic BMG. On the other hand, nano-scale icosahedral phase embedded BMG composite showed enhanced strength and plasticity. These improved mechanical properties were attributed to the multiplication of shear bands and blocking of the shear band propagation in terms of isolation and homogeneous distribution of nanosize icosahdral phases in the glassy matrix, followed by stabilizing the mechanical and deformation instabilities.

한반도 주변해역 일별 위성 해수면온도 합성장 스펙트럼 특성 (Characteristics of Spectra of Daily Satellite Sea Surface Temperature Composites in the Seas around the Korean Peninsula)

  • 우혜진;박경애;이준수
    • 한국지구과학회지
    • /
    • 제42권6호
    • /
    • pp.632-645
    • /
    • 2021
  • 위성 해수면온도 합성장은 수치예보모델의 입력 자료 및 지구온난화와 기후 변화 연구에 활용되는 중요한 자료이다. 본 연구에서는 2007년부터 2018년까지 6종류의 위성 해수면온도 합성장 자료를 수집하여 한반도 주변 해역에서 각 해수면온도 합성장 자료의 공간 분포 특성을 분석하였다. 기상청 해양기상부이 실측 수온 자료와 해수면온도 합성장 자료의 시계열을 비교하고 오차의 최대값 및 최대값이 나타나는 시기를 분석하였다. 황해 연안에 위치한 덕적도와 칠발도 부이에서 위성 해수면온도 합성장과 실측 수온의 차는 1년주기 또는 반년주기의 높은 변동성을 보였다. 포항 부이에서는 강한 용승에 의해 냉수대가 발생한 2013년 여름철에 높은 수온 차가 나타났다. 해수면온도 자료의 시계열을 활용하여 스펙트럼 분석을 수행한 결과, 일별 위성 해수면온도 합성장은 약 1개월 이상의 주기에서는 실측 자료와 유사한 스펙트럼 에너지를 보였다. 반면 위성 해수면온도 합성장과 실측 수온의 스펙트럼 에너지의 차는 시간 주파수가 증가할수록 증가하는 경향을 보였다. 이는 위성 해수면온도 합성장 자료가 연안 부근 수온의 시간적 변동성을 적절하게 표현하지 못하였을 가능성을 시사한다. 위성 해수면온도 영상의 해양 전선은 공간 구조와 강도의 측면에서 위성 해수면 온도 합성장 자료 간 차이점을 보였다. 해수면온도 합성장에서 표현되는 공간 규모 또한 공간 스펙트럼 분석을 통해 조사하였다. 그 결과 고해상도 해수면온도 합성 영상이 저해상도 해수면온도 영상보다 상대적으로 중규모 해양 현상의 공간 구조를 더 잘 표현하였다. 따라서 실제 중규모 해양 현상을 보다 구체적으로 표현할 수 있는 위성 해수면온도 합성장 생산을 위한 고도의 기술 개발이 필요하다.

Temperature Calibration of a Specimen-heating Holder for Transmission Electron Microscopy

  • Kim, Tae-Hoon;Bae, Jee-Hwan;Lee, Jae-Wook;Shin, Keesam;Lee, Joon-Hwan;Kim, Mi-Yang;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • 제45권2호
    • /
    • pp.95-100
    • /
    • 2015
  • The in-situ heating transmission electron microscopy experiment allows us to observe the time- and temperature-dependent dynamic processes in nanoscale materials by examining the same specimen. The temperature, which is a major experimental parameter, must be measured accurately during in-situ heating experiments. Therefore, calibrating the thermocouple readout of the heating holder prior to the experiment is essential. The calibration can be performed using reference materials whose phase-transformation (melting, oxidation, reduction, etc.) temperatures are well-established. In this study, the calibration experiment was performed with four reference materials, i.e., pure Sn, Al-95 wt%Zn eutectic alloy, NiO/carbon nanotube composite, and pure Al, and the calibration curve and formula were obtained. The thermocouple readout of the holder used in this study provided a reliable temperature value with a relative error of <4%.

타이타니아 단섬유상의 석출이 결정화유리의 마모특성에 미치는 영향 (Effects of Titania Whisker Precipitation on Wear Property of the Glass-Ceramic)

  • 이경호
    • 한국세라믹학회지
    • /
    • 제33권2호
    • /
    • pp.192-202
    • /
    • 1996
  • In Li0.4Ca0.05AlP0.5Si0.75O4.5 composition glass, glass-ceramic having a near 100% crystallinity after nucleation heat treatment of 74$0^{\circ}C$/2 h and crystallization heat treatment of 90$0^{\circ}C$/2 h and in-situ TiO2 whisker reinforced glass-ceramic after heat treatment of 105$0^{\circ}C$ for 20 h were fabricated with the addition of 4% TiO2 as a nucleating agent. With these materials a ball-on-disc type wear test was conducted in order to examine the effect of TiO2 whisker prepcipitation on ambient and high temperature wear properties of the glass-ceramic. Wear test results indicated that all specimens exhibited micro-fracture wear mechanism in ambient temperature. As temperature increased the wear rates of the materials were increased. However the in-situ TiO2 whisker reinforced glass-ceramic exhibited the lowest wear rate over the test temperature range. This resulted from the improvement of harness and fracture toughness of the material as the glass converted into the glass-ceramic followed by precipitation of TiO2 whiskers throughout the glass-ceramic matrix.

  • PDF

현장 강우재현시험을 통한 방조제 사면필터층의 필터성능분석 (Evaluation of Filter Capacity for Sea Dyke Slope Filter Layer by In-situ Rainfall Test)

  • 오영인;김서룡;유전용;김현태
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.828-837
    • /
    • 2006
  • Geotextiles consist of three major types of geosynthetic material (woven, non-woven and composite) and the functions of geotextiles are separation, reinforcement, filtration, drainage and as a moisture barrier. Although the many research scholar and engineer developed and established the design criteria and construction methodology, sustainable research still needed for optimum design methodology to the complicate field conditions. In this study, in-situ rainfall test performed to develop suitable filter system for sea dyke upper slope filter layer. In-situ rainfall test conducted for seven different filter system and measured the infiltration flux and pore pressure at various filter layer. Based on the test results, the double layered geotextile filter and sand transition system is most suitable for sea dyke upper filter layer because which system is effective for drainage of infiltration flow and minimize the deformation of sea dyke cover stone.

  • PDF