• Title/Summary/Keyword: In - Plane Loads

Search Result 422, Processing Time 0.022 seconds

Ship Frame Ring Analysis by a Matrix Method (매트릭스법(法)에 의한 선체근골환(船體筋骨環) 해석(解析))

  • S.J.,Yim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 1973
  • A simple matrix method to analyze the ship's transverse frame ring is proposed. In this approach, the frame ring is treated as a plane frame of uniform slender members. The loadings on the frame consist of buoyancy loads, deck loads and cargo loads. The hatch coaming are considered to deflect under the loads. Because of symmetry, only the half of the frame is analyzed. The method is to obtain the forces and moments on each member. The deformation of the frame can be determined from the nodal displacements. For a sample calculation, a frame ring of a 10,000 ton class cargo liner is analyzed on the IBM 1130 computer. The numerical results obtained are proved to be resonable.

  • PDF

A Study on the Effect of Fatigue and Crack Propagation Behavior in Spot Weld of High Strength Steel( I ) - Experimental Examination - (고장력 강판의 점용접부에서 면내 굽힘 모멘트가 피로특성 및 균열 성장 거동에 미치는 영향에 관한 연구(I) - 실험적 검토 -)

  • 성기찬;장경복;정진우;김기순;강성수
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.112-117
    • /
    • 2001
  • The factor affecting on the fatigue strength of spot welded specimen have been studied. To analyze and predict crack initiation position and propagation directions on the spot welded area are very important for strength design of the automobile body structure. In fact, there are a various of loads in running automobile but, it is impossible to replay like an actual conditions in the laboratory. So, in this study tensile-shear type and in-plane bending type specimens were used in fatigue test and includes an analysis of fatigue crack initiation position and propagation directions about earth specimens. The results obtained in the present study are summarized as follows: 1. In tensile-shear type fatigue test, the region of fatigue crack initiation position was affected by out-of-plane bending deformation due to bending angle. 2 In in-plane bending type fatigue test, the behavior of fatigue crack initiation position and propagation derections due to angle between upper plate and lower plate was dominated by magnitude of in-plane bending moment.

  • PDF

Non-Linear dynamic pulse buckling of laminated composite curved panels

  • Keshav, Vasanth;Patel, Shuvendu N.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.181-190
    • /
    • 2020
  • In this paper, non-linear dynamic buckling behaviour of laminated composite curved panels subjected to dynamic in-plane axial compressive loads is studied using finite element methods. The work is carried out using the finite element software ABAQUS. The curved panels are modelled with S4R element and the nonlinear dynamic equilibrium equations are solved using the ABAQUS/Explicit algorithm. The effect of aspect ratio, radius of curvature and thickness are studied. The importance of orientation of plies in the direction of loading is also reiterated in this study. Vol'mir's criterion is used to calculate the dynamic buckling loads. The panels are subjected to rectangular pulse load of various amplitude and durations and the responses are observed. For particular loading amplitude, a critical value of loading duration is observed beyond which the variation of dynamic buckling load is insignificant. It is also observed that, the value of dynamic bucking load reduces as the loading duration is increased though the reduction is not much after a particular loading duration.

Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads

  • Behravan Rad, A.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.139-161
    • /
    • 2012
  • In this paper, the static behavior of bi-directional functionally graded (FG) non-uniform thickness circular plate resting on quadratically gradient elastic foundations (Winkler-Pasternak type) subjected to axisymmetric transverse and in-plane shear loads is carried out by using state-space and differential quadrature methods. The governing state equations are derived based on 3D theory of elasticity, and assuming the material properties of the plate except the Poisson's ratio varies continuously throughout the thickness and radius directions in accordance with the exponential and power law distributions. The stresses and displacements distribution are obtained by solving state equations. The effects of foundation stiffnesses, material heterogeneity indices, geometric parameters and loads ratio on the deformation and stress distributions of the FG circular plate are investigated in numerical examples. The results are reported for the first time and the new results can be used as a benchmark solution for future researches.

Limit Loads for Pipe Bends under Combined Pressure and in-Plane Bending Based on Finite Element Limit Analysis (압력과 모멘트의 복합하중을 받는 곡관에 대한 유한요소 한계하중 해석)

  • Oh Chang-Sik;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.505-511
    • /
    • 2006
  • In the present paper, approximate plastic limit load solutions fur pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The present FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the present FE results. The proposed limit load solutions would be a basis of defective pipe bends and be useful to estimate non-linear fracture mechanics parameters based on the reference stress approach.

Limit Loads for Pipe Bends under Combined Pressure and in-Plane Bending Based on Finite Element Limit Analysis (압력과 모멘트의 복합하중을 받는 곡관에 대한 유한요소 한계하중 해석)

  • Oh C.S.;Kim Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.401-402
    • /
    • 2006
  • In the present paper, approximate plastic limit load solutions for pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The present FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the present FE results. The proposed limit load solutions would be a basis of defective pipe bends and be useful to estimate non-linear fracture mechanics parameters based on the reference stress approach.

  • PDF

In-Plane Flexural Vibration Analysis of Arches Using Three-Noded Hybrid-Mixed Element (3절점 혼합유한요소를 이용한 아치의 면내굽힘진동해석)

  • Kim, J.G.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.83-89
    • /
    • 2006
  • Curved beams are more efficient in transfer of loads than straight beams because the transfer is effected by bending, shear and membrane action. The finite element method is a versatile method for solving structural mechanics problems and curved beam problems have been solved using this method by many author. In this study, a new three-noded hybrid-mixed curved beam element is proposed to investigate the in-plane flexural vibration behavior of arches depending on the curvature, aspect ratio and boundary conditions, etc. The proposed element including the effect of shear deformation is based on the Hellinger-Reissner variational principle, and employs the quadratic displacement functions and consistent linear stress functions. The stress parameters are then eliminated from the stationary condition of the variational principle so that the standard stiffness equations are obtained. Several numerical examples confirm the accuracy of the proposed finite element and also show the dynamic behavior of arches with various shapes.

  • PDF

Splitting of reinforced concrete panels under concentrated loads

  • Foster, Stephen J.;Rogowsky, David M.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.803-815
    • /
    • 1997
  • It is well understood that concentrated forces applied in the plane of a beam or panel (such as a wall or slab) lead to splitting forces developing within a disturbed region forming beyond the bearing zone. In a linearly elastic material the length of the disturbed region is approximately equal to the depth of the member. In concrete structures, however, the length of the disturbed region is a function of the orthotropic properties of the concrete-steel composite. In the detailing of steel reinforcement within the disturbed regions two limit states must be satisfied; strength and serviceability (in this case the serviceability requirement being acceptable crack widths). If the design requires large redistribution of stresses, the member may perform poorly at service and/or overload. In this paper the results of a plane stress finite element investigation of concentrated loads on reinforced concrete panels are presented. Two cases are examined (i) panels loaded concentrically, and (ii) panels loaded eccentrically. The numerical investigation suggests that the bursting force distribution is substantially different from that calculated using elastic design methods currently used in some codes of practice. The optimum solution for a uniformly reinforced bursting region was found to be with the reinforcement distributed from approximately 0.2 times the effective depth of the member ($0.2D_e$) to between $1.2D_e$ and $1.6D_e$. Strut and tie models based on the finite element analyses are proposed herein.

Decrease trends of ultimate loads of eccentrically loaded model strip footings close to a slope

  • Cure, Evrim;Sadoglu, Erol;Turker, Emel;Uzuner, Bayram Ali
    • Geomechanics and Engineering
    • /
    • v.6 no.5
    • /
    • pp.469-485
    • /
    • 2014
  • A series of bearing capacity tests was conducted with eccentrically loaded model surface and shallow strip footings resting close to a slope to investigate behavior of such footings (ultimate loads, failure surfaces, load-displacement curves, rotation of footing, etc.). Ultimate loads of footing close to slope decreased with increasing eccentricity for both surface and shallow footings. Failure surfaces were not symmetrical, primary failure surfaces occurred on the eccentricity side (the slope side) and secondary failure surfaces occurred on the other side. Lengths of failure surfaces decreased with increasing eccentricity. Footings always rotated towards eccentricity side a few degrees. For eccentrically loaded footing, decrease in ultimate load with increasing eccentricity is roughly in agreement with Customary Analysis.

Elacstic-\Plastic Limit Load Analysis of Notched Specimen by the Finite Element Method (노치 ( Notch )를 가진 試片의 有限要素法에 의한 彈塑性 極限 荷重解析)

  • Lee, Taik-Soon;Kim, Dong-Sub;Hwang, Pyung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.379-385
    • /
    • 1983
  • Many papers have shown limit loads of v-notched tension specimens in plane stress by the elastic-plastic finite element method. But they are always higher than the theoretical maximum loads. The present approach tries to find the reasons and formulates correction factor applicable to any notch shape using virtual work principle with triangular elements. The corrected limit loads are in good agreement with theoretical upper bound solutions and they are little influenced by mesh size and specimen length, which make the computing time save.