• Title/Summary/Keyword: Impurities

Search Result 1,327, Processing Time 0.03 seconds

A Study on Dimethacryloyloxy Alkane Derivatives Having an Anti-wear Performance as Lubricating Oil Additives (윤활유첨가제로써 마모억제 성능을 갖는 Dimethacryloyloxy Alkane 유도체에 관한 연구)

  • Han, Hye-Rim;Cho, Jung-Eun;Sim, Dae-Seon;Kang, Chung-Ho;Kim, Young-Wun;Jeong, Noh-Hee;Kang, Ho-Cheol
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.583-589
    • /
    • 2016
  • Lubricant additives including zinc dialkyldithiophosphate (ZDDP) containing metal have been widely used due to the advantage of very low cost, but they can generate impurities such as ash. In this work, ZDDP containing metals was partially replaced with bis[3-(dialkyloxyphosphorothionyl) thio-2-methylpropanyloxy] butane (BAP4s) which was synthesized conveniently and effectively from alkanediol without any metal components. Also, the wear resistance property of synthesized BAP4s were studied. Wear scar diameter (WSD) values of BAP4s with butyl, octyl, decyl, dodecyl or tetradecyl groups were also measured by four-ball test. As the length of the alkyl group increased from 4 to 8, the WSD value of BAP4s decreased rapidly from 0.59 to 0.45 mm, but from 8 to 14, the value increased very slowly from 0.45 to 0.50 mm. Thus, among all BAP4s, B8P4 having BAP4 with the octyl group, showed the lowest WSD value. Furthermore, the WSD values were measured in a lubricant base oil mixed with a 0.50 percent concentration (w/w) of either BAP4 or ZDDP. The former was 0.55 mm, and the latter was 0.45 mm. The thermal stability and tribofilm formation peroperty were also measured by thermogravimetric analyzer (TGA) and energy-dispersive X-rays spectroscopy (EDS), respectively.

Electrochemical properties of $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3$ cathodes for medium-temperature SOFC (중간온도형 고체산화물 연료전지의 양극재료로서 $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3$의 전기화학특성)

  • Ryu Ji-H.;Jang Jong-H.;Lee Hee-Y.;Oh Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • For the purpose of finding new cathode materials for medium-temperature $(700\~800^{\circ}C)$ solid oxide fuel cells, $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3,\;(x=0.0\~0.5)$ are prepared, and their thermal stability and conductivity characteristics are investigated. Also, the cathodic activities are measured after the cathode layer being attached on CGO (cerium-gadolinium oxide) electrolyte disk. The X-ray analyses indicate that the materials prepared by calcining the citrate-gels at $800^{\circ}C$ have the orthorhombic perovskite structure without discernible impurities. The thermal stability of the undoped Co perovskite is so poor that it is decomposed to the individual binary oxide even at $1300^{\circ}C$. But the partially Fe-doped cobaltates exhibit a better thermal stability to retain their structural integrity up to $1400^{\circ}C$. The observation whereby both the undoped and Fe-doped cobaltates melt at ca. $1300^{\circ}C$ leads us to perform the electrode adhesion at <$1300^{\circ}C$. The cathodic activity of $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3,\;(x=0.0\~0.5)$, electrodes is superior to $La_{0.9}Sr_{0.1}MnO_3$, among the samples of $x=0.0\~0.5$, the x=0.2 cathode shows the best activity for the oxygen reduction reaction. It is likely that the Fe-doping provides a better thermal stability to the materials but in turn imparts an inferior cathodic activity, such that the optimum trade-off is made at x=0.2 between the two factors. The total electrical conductivity and ion conductivity of $Gd_{0.8}Ca_{0.2}Co_{1-x}Fe_xO_3$, are measured to be 51 S/cm and $6.0\times10^{-4}S/cm\;at\;800^{\circ}C$, respectively. The conductivity values illustrate that the materials are a mixed conductor and the reaction sites can be expanded to the overall electrode surface, thereby providing a better cathodic activity than $La_{0.9}Sr_{0.1}MnO_3$.

Effect of Metal Addition and Silica/Alumina Ratio of Zeolite on the Ethanol-to-Aromatics by Using Metal Supported ZSM-5 Catalyst (금속담지 ZSM-5 촉매를 사용한 에탄올로부터 방향족 화합물 제조에 관한 제올라이트의 금속성분 및 실리카/알루미나 비의 영향)

  • Kim, Han-Gyu;Yang, Yoon-Cheol;Jeong, Kwang-Eun;Kim, Tae-Wan;Jeong, Soon-Yong;Kim, Chul-Ung;Jhung, Sung Hwa;Lee, Kwan-Young
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.418-425
    • /
    • 2013
  • The catalytic conversion of ethanol to aromatic compounds ETA was studied over ZSM-5 heterogeneous catalysts. The effect of reaction temperature, weight hourly space velocity (WHSV), and addition of water and methanol, which are the potential impurities of bio-ethanol, on the catalytic performance was investigated in a fixed bed reactor. Commercial ZSM-5 catalysts having different Si/$Al_2$ ratios of 23 to 280 and modified ZSM-5 catalysts by addition of metal (Zn, La, Cu, and Ga) were used for the activity and stability tests in ETA reaction. The catalysts were characterized with ammonia temperature programmed desorption ($NH_3$-TPD) and nitrogen adsorption-desorption techniques. The results of catalytic performance revealed that the optimal Si/$Al_2$ ratio of ZSM-5 is about 50~80 and the selectivity to aromatic compounds decreases in the order of Zn/La > Zn > La > Cu > Ga for the modified ZSM-5 catalysts. Among these catalysts from the ETA reaction, Zn-La/ZSM-5 showed the best catalytic performance for the ETA reaction. The selectivity to aromatic compounds was 72% initially and 56% after 30 h over the catalysts at reaction temperature of $437^{\circ}C$ and WHSV of $0.8h^{-1}$.

Studies on the Shelf-life Extension of Jeotkal, Salted and Fermented Seafood (젓갈류의 유통기한 연장을 위한 연구)

  • Cho, Hak-Rae;Park, Uk-Yeon;Chang, Dong-Suck
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.652-660
    • /
    • 2002
  • To develop natural food preservatives for extending the shelf-life of jeotkal (salted and fermented seafood), antimicrobial substances were extracted from 32 types of medicinal herbs and edible plants using 95% ethanol. Among the extracts, Glycyrrhizae radix, Curcumae domestica, Galla rhois, and Resina pini showed relatively high inhibitory effects on the growth of the microorganisms isolated from the deteriorated jeotkal. We selected and tested the extract from Recina pini as a natural jeotkal preservative. This ethanol extract was purified partially by adding equal quantity of water, through which 77% of insoluble materials were removed as impurities. In manufacturing modified jeotkal using squid, sucrose and starch syrup were substituted with sorbitol, $glucono-{\delta}-lactone$ was added instead of vitamin C and lactic acid, and sterilized hot pepper was used instead of natural one. The shelf-life of modified jeotkal was prolonged by 4 days compared with the control jeotkal when stored at $20^{\circ}C$, while that of modified jeotkal containing 1.0% partially purified Recina pini extract was prolonged by 6 days compared to the control. The same tests were conducted for the changran (stomach and intestine of Alaska pollack) jeotkal preservation. The shelf-life of the control jeotkal was 24 days, whereas the modified jeotkal and the Resina pini extract-containing modified jeotkal maintained their qualities without changes in microbial and chemical characteristics for 90 days at $20^{\circ}C$ storage.

Study on the Casting Technology and Restoration of "Sangpyong Tongbo" (상평통보 주조와 복원기술연구)

  • Yun, Yong-hyun;Cho, Nam-chul;Jeong, Yeong-sang;Lim, In-ho
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.4
    • /
    • pp.224-243
    • /
    • 2014
  • This study examined the materials and casting technology(cast, alloy, etc.) used in the manufacturing of bronze artifacts based on old literature such as Yongjae Chonghwa, Cheongong Geamul, and The Korea Review. In the casting experiment for restoration of Sangpyong Tongbo, a bronze and brass mother coin mold was made using the sand mold casting method described in The Korea Review. The cast was comprised of the original mold plate frame, wooden frame, and molding sand. Depending on the material of the outer frame, which contains the molding sand, the original mold plate frame can be either a wooden frame or steel frame. For the molding sand, light yellow-colored sand of the Jeonbuk Iri region was used. Next, the composition of the mother alloy used in the restoration of Sangpyong Tongbo was studied. In consideration of the evaporation of tin and lead during actual restoration, the composition of Cu 60%, Zn 30%, and Pb 10% for brass as stated in The Korea Review was modified to Cu 60%, Zn 35%, and Pb 15%. For bronze, based on the composition of Cu 80%, Sn 6%, and Pb 14% used for Haedong Tongbo, the composition was set as Cu 80%, Sn 11%, and Pb 19%. The mother coin mold was restored by first creating a wooden father coin, making a cast from the wooden frame and basic steel frame, alloying, casting, and making a mother coin. Component analysis was conducted on the mother alloy of the restored Sangpyong Tongbo, and its primary and secondary casts. The bronze mother alloy saw a 5% increase in copper and 4% reduction in lead. The brass parent alloy had a 5% increase in copper, but a 4% and 12% decrease in lead and tin respectively. Analysis of the primary and secondary mother coin molds using an energy dispersive spectrometer showed that the bronze mother coin mold had a reduced amount of lead, while the brass mother coin mold had less tin. This can be explained by the evaporation of lead and tin in the melting of the primary mother coin mold. In addition, the ${\alpha}$-phase and lead particles were found in the mother alloy of bronze and brass, as well as the microstructure of the primary and secondary coin molds. Impurities such as Al and Si were observed only in the brass mother coin mold.

Establishment and application of standard-RSF for trace inorganic matter mass analysis using GD-MS (GD-MS 분석 장비를 활용한 극미량 무기물 질량 분석을 위한 표준RSF 구축 및 응용)

  • Jang, MinKyung;Yang, JaeYeol;Lee, JongHyeon;Yoon, JaeSik
    • Analytical Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.240-246
    • /
    • 2018
  • The present study analyzed standard samples of three types of aluminum matrix certified reference materials (CRM) using GD-MS. Calibration curves were constructed for 13 elements (Mg, Si, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Sn, and Pb), with the slope representing the relative sensitivity factor (RSF). The x- and y-axes of the calibration curve represented ion beam ratio (IBR) and the authenticated value of the standard sample, respectively. In order to evaluate precision and linearity of the calibration curve, RSD and the coefficient of determination were calculated. Curve RSD for every element reflected high precision (within 10 %). For most elements, the coefficient of determination was ${\geq}0.99$, indicating excellent linearity. However, vanadium, nickel, and gallium curves exhibited relatively low linearity (0.90~0.95), likely due to their narrow concentration ranges. Standard RSF was calculated using the slope of the curve generated for three types of CRM. Despite vanadium, nickel, and gallium exhibiting low coefficients of determination, their standard RSF resembled that of the three types of CRM. Therefore, the RSF method may be used for element quantitation. Standard iron matrix samples were analyzed to verify the applicability of the aluminum matrix standard RSF, as well as to calculate the RSD-estimated error of the measured value relative to the actual standard value. Six elements (Al, Si, V, Cr, Mn, and Ni) exhibited an RSD of approximately 30 %, while the RSD of Cu was 77 %. In general, Cu isotopes are subject to interference: $^{63}Cu$ to $^{54}Fe^{2+}-^{36}Ar$ and $^{65}Cu$ to $^{56}Fe-Al^{3+}$ interference. Thus, the influence of these impurities may have contributed to the high RSD value observed for Cu. To reliably identify copper, the resolution should be set at ${\geq}8000$. However, high resolutions are inappropriate for analyzing trace elements, as it lowers ion permeability. In conclusion, quantitation of even relatively low amounts of six elements (Al, Si, V, Cr, Mn, and Ni) is possible using this method.

Optimal Operation of Gas Engine for Biogas Plant in Sewage Treatment Plant (하수처리장 바이오가스 플랜트의 가스엔진 최적 운영 방안)

  • Kim, Gill Jung;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.2
    • /
    • pp.18-35
    • /
    • 2019
  • The Korea District Heating Corporation operates a gas engine generator with a capacity of $4500m^3 /day$ of biogas generated from the sewage treatment plant of the Nanji Water Recycling Center and 1,500 kW. However, the actual operation experience of the biogas power plant is insufficient, and due to lack of accumulated technology and know-how, frequent breakdown and stoppage of the gas engine causes a lot of economic loss. Therefore, it is necessary to prepare technical fundamental measures for stable operation of the power plant In this study, a series of process problems of the gas engine plant using the biogas generated in the sewage treatment plant of the Nanji Water Recovery Center were identified and the optimization of the actual operation was made by minimizing the problems in each step. In order to purify the gas, which is the main cause of the failure stop, the conditions for establishing the quality standard of the adsorption capacity of the activated carbon were established through the analysis of the components and the adsorption test for the active carbon being used at present. In addition, the system was applied to actual operation by applying standards for replacement cycle of activated carbon to minimize impurities, strengthening measurement period of hydrogen sulfide, localization of activated carbon, and strengthening and improving the operation standards of the plant. As a result, the operating performance of gas engine # 1 was increased by 530% and the operation of the second engine was increased by 250%. In addition, improvement of vent line equipment has reduced work process and increased normal operation time and operation rate. In terms of economic efficiency, it also showed a sales increase of KRW 77,000 / year. By applying the strengthening and improvement measures of operating standards, it is possible to reduce the stoppage of the biogas plant, increase the utilization rate, It is judged to be an operational plan.

Material Characteristics of Gold Artifacts of Sarira Reliquary inside Stone Pagoda of Mireuksa Temple Site (미륵사지 석탑 출토 사리장엄 금제유물의 재료학적 특성)

  • Kwon, Hyuk-nam;Yoo, Dong-wan;Lee, Jang-jon;Han, Min-su
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.4
    • /
    • pp.210-223
    • /
    • 2014
  • When sarira reliquary was found in stone pagoda of Mireuksa Temple, there were 494 gold artifacts, including inner gold pot, gold plate with inscription for Sarira enshrinement, etc. Most of gold artifacts were crafted, but there were 22 gold plates and 4 gold ingots, which did not have any specific shape. It was considered that they had not been crafted. Since gold exists as a metal rather than a metallic oxide in nature, in general, it can be crafted by melting and shaping. However, gold in nature has impurities so it has to be refined to have malleability. The characteristic features were identified through the analysis of gold artifacts from sarira reliquary found in stone pagoda of Mireuksa Temple. The analysis result showed that there were 3 types of gold; pure gold artifacts, artifacts produced with silver containing gold and natural gold ingots. Inner gold pot, gold earrings and gold small beads were produced with pure gold and they contained less than 1wt.% of copper. It seemed like they were produced as pure gold to be shaped by hammering. Gold plate with inscription, tweezers, gold earrings, ingots, etc. were produced with silver containing gold as they had to be more solid. Gold ingots seemed to be natural gold considering the distribution of silver and copper in them, but it cannot be concluded as there are not enough information on gold ingots in Korea. The comprehensive research on gold ingots from various regions in Korea has to be carried out to confirm the above. Sarira Reliquary showed the very sophisticated gold craftsmanship. Gold ingots with the inscriptions, which say 1 nyang, were approximately 14g. Considering the weight of these ingots as standard, weights of other ingots were half nyang(7g), 2 nyang(28g), etc.

Scale-up Study of Heterogeneous Catalysts for Biodiesel Production from Nepalese Jatropha Oil (네팔산 자트로파 오일로부터 바이오디젤 제조를 위한 불균일계 촉매 Scale-up 연구)

  • Sim, Minseok;Lee, Seunghee;Kim, Youngbin;Ku, Huiji;Woo, Jaegyu;Joshi, Rajendra;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.198-204
    • /
    • 2021
  • This study focused on a two-step process using heterogeneous catalysts to produce biodiesel using Nepalese jatropha oil as a raw material. As a first step, the effect of the repetitive regeneration number of Amberlyst-15 on the esterification reaction of FFA in jatropha oil was investigated. Second, the possibility of a transesterification reaction scale-up using a dolomite bead catalyst was tested. Using 120 kg of jatropha seeds from Nepal, 30 L (27 kg) of jatropha oil was obtained, and the jatropha oil yield from the seeds was about 25.0 wt%. The acid value and FFA content of jatropha oil were measured to be 11.3 mgKOH g-1 and 5.65%, respectively. As a result of the esterification reaction of jatropha oil using the Amberlyst-15 catalyst in the form of beads, the acid value of the reaction product could be lowered to 0.26 mgKOH g-1 when the fresh Amberlyst-15 catalyst was used. As the regeneration of the Amberlyst-15 catalyst is repeated, the catalyst has been deactivated, and the esterification reaction performance has deteriorated. The cause of the deactivation seems to be due to the catalyst being broken and impurities being deposited. It was confirmed that the Amberlyst-15 catalyst could be reused up to 5 times for the esterification reaction of jatropha oil. In the second step, the transesterification reaction, a dolomite catalyst, was mass-produced and used in the form of beads. By transesterifying the pretreated jatropha oil in a spinning catalyst basket reactor equipped with 90 g of dolomite bead catalyst, 89.1 wt% of biodiesel yield was obtained in 2 hours after the start of the reaction, which was similar to the transesterification of soybean oil under the same conditions.

A Study on Smalt Pigments Used in Large Buddhist Paintings in the 18th and 19th Centuries (18~19세기 대형 불화에 사용된 회청(Smalt) 안료에 관한 연구)

  • YUN, Jihyeon;KIM, Sojin;KIM, Gyuho
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.3
    • /
    • pp.120-129
    • /
    • 2022
  • The purpose of this study is to analyze the chemical composition of smalt pigments used in 10 large Buddhist paintings in the Joseon Dynasty using energy dispersive X-ray spectroscopy, and to clarify the material and characteristics by observing morphological characteristics using polarized light microscopy and a scanning electron microscope. Through chemical composition analysis, the smalt of all 10 large Buddhist paintings is judged to be potash glass using SiO2 as a former and K2O as a flux. In addition to the components related to cobalt ore used as a colorant, the paintings were found to contain high levels of As2O3, BaO, and PbO. The smalt particles did not have specific forms, and were blue in color, with various chromaticity. In some particles, conchoidal fracture, spherical bubbles, and impurities were observed. Through backscattered electron images, it was found that the smalt from paintings produced in the early 18th century AD had a high level of As, but the smalt from paintings produced from the mid-18th century AD onwards exhibited various contrast differences from particle to particle, and there was smalt with high levels of As, Ba, and Pb. Through the above results, the large Buddhist paintings in the Joseon Dynasty are divided into three smalt types. Type A is a type with high As2O3, type B is a type with high BaO, and type C is a type with high PbO. Looking at the three types of smalt pigments by the period of production, although some in-between periods were not detected, type A was confirmed to have been used from 1705 to 1808, while type B and type C were shown to have appeared in 1750 and used until 1808. This reveals that only one type of smalt was used until the early 18th century AD, and from the middle of the 18th century AD, several types of smalt were mixed and used in one large Buddhist painting. Studies such as this research are expected to provide insights into the characteristics of the smalt pigments used to produce large Buddhist paintings at the time.