• 제목/요약/키워드: Impulse Hammer Test

검색결과 15건 처리시간 0.026초

충격 햄머 실험에서 다자유도 주파수 응답 스펙트럼의 개선 (An Enhancement of Multi-Dof Frequency Response Spectrum from Impact Hammer Testing)

  • Ahn, Se-Jin;Jeong, Weui-Bong
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.363.2-363
    • /
    • 2002
  • The spectrum of impulse response signal from an impulse hammer testing is widely used to obtain frequency response function(FRF) of the structure. However the FRFs obtained from impact hammer testing have not only leakage errors but also finite record length errors when the record length for the signal processing is not sufficiently long. The errors cannot be removed with the conventional signal analyzer which treats the signals as if they are always steady and periodic. (omitted)

  • PDF

충격햄머 가진으로 구한 주파수응답함수의 오차와 해결방법 (The errors and reducing method in the frequency response function from impact hammer testing)

  • 안세진;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.71-77
    • /
    • 2002
  • The spectrum of impulse response signal which is obtained from an impulse hammer testing is used for frequency response function, nevertheless it has serious faults when the record length for the signal processing is not very long. The faults cannot be avoided with the conventional signal analyzer that is processing all the signals as if they are always periodic. The signals generated by the impact hammer are undoubtedly non-periodic because of the damping, and are acquired for limited recording time due to the memory as well as the computation performance of the signal analyzer. This paper will make clear the relation between the faults and the length of recording time, and propose the way for solving the faults.

  • PDF

최적화 기법을 이용한 다자유도 충격응답스펙트럼의 오차 개선 (The Improvement of Multi-dof Impulse Response Spectrum by Using Optimization Technique)

  • 안세진;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제12권10호
    • /
    • pp.792-798
    • /
    • 2002
  • The spectrum of impulse response signal from an impulse hammer testing is widely used to obtain frequency response function (FRF) of the structure. However the FRFs obtained from impact hammer testing have not only leakage errors but also finite record length errors when the record length for the signal processing is not sufficiently long. The errors cannot be removed with the conventional signal analyzer which treats the signals as if they are always steady and periodic. Since the response signals generated by the impact hammer are transient and have damping, they are undoubtedly non-periodic. It is inevitable that the signals be acquired for limited recording time, which causes the finite record length error and the leakage error. In this paper, the errors in the frequency response function of multi degree of freedom system are formulated theoretically. And the method to remove these errors is also suggested. This method is based on the optimization technique. A numerical example of 3-dof model shows the validity of the proposed method.

충격햄머 실험에서 다자유도 주파수 응답스팩트럼의 개선 (An Enhancement of Multi-Dof Frequency Response Spectrum From Impact Hammer Testing)

  • 안세진;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.623-629
    • /
    • 2002
  • The spectrum of impulse response signal from an impulse hammer testing is widely used to obtain frequency response function(FRF) of the structure. However the FRFs obtained from impact hammer testing have not only leakage errors but also finite record length errors when the record length for the signal processing is not sufficiently long. The errors cannot be removed with the conventional signal analyzer which treats the signals as if they are always steady and periodic. Since the response signals generated by the impact hammer are transient and have damping, they are undoubtedly non-periodic. It is inevitable that the signals be acquired for limited recording time, which causes the finite record length error and the leakage error. In this paper, the errors in the frequency response function of multi degree of freedom system are formulated theoretically. And the method to remove these errors is also suggested. This method is based on the optimization technique. A numerical example of 3-dof model shows the validity of the proposed method.

  • PDF

충격햄머 실험에 의한 1자유도 주파수응답함수의 오차와 해결방법 (The Errors and Reducing Method in 1-dof Frequency Response Function from Impact Hammer Testing)

  • 안세진;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제12권9호
    • /
    • pp.702-708
    • /
    • 2002
  • The spectrum of impulse response signal from an impulse hammer testing is widely used to obtain frequency response function(FRF). However the FRFs obtained from impact hammer testing have not only leakage errors but also finite record length errors when the record length for the signal processing is not sufficiently long. The errors cannot be removed with the conventional signal analyzer which treats the signals as if they are always steady and periodic. Since the response signals generated by the impact hammer are transient and have damping, they are undoubtedly non-periodic. It is inevitable that the signals be acquired for limited recording time, which causes the errors. This paper makes clear the relation between the errors of FRF and the length of recording time. A new method is suggested to reduce the errors of FRF in this paper. Several numerical examples for 1-dof model are carried out to show the property of the errors and the validity of the proposed method.

고속 금형가공센터 구조물의 강성평가에 관한 연구 (A Study on the Static and Dynamic Stiffness Evaluation of a High Speed Mold/Die Machining Center Structure)

  • 최영휴;강영진;차상민;김태형;박보선;최원선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.102-106
    • /
    • 2003
  • An experimental modal analysis and dynamic stiffness evaluation of a moving body structure of a high speed machining center are presented in this paper. The natural frequencies and corresponding modes, and dynamic compliance of a moving body structure of high speed machining center are investigated by using F.E.M., hydraulic exciter test, and impulse hammer test. The lowest three natural frequencies were found to be 56.6 Hz, 112.7 Hz, and 142.7 Hz by FEA respectively, while those were 55 Hz, 112 Hz, 131 Hz by experimental analysis. Furthermore, both computed and measured absolute dynamic compliances of the moving body structure in iso-direction showed good agreement especially at the first two mode frequencies. With our experimental data, the dynamic characteristics of the machining center can be exploited to get a new development of structural dynamic design and modification.

  • PDF

다기능 5축 복합가공기 램 헤드 모듈의 동특성 분석 (Dynamic Characteristics Analysis of a 5-Axes Multi-tasking Machine Tool by using F.E.M and Impulse Hammer Test)

  • 김성민;장성현;김실근;하종식;최영휴
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1590-1594
    • /
    • 2007
  • This paper describes a case study on dynamic characteristics analysis of a 5-axis multi-tasking machine tool of ram-head typed. Natural frequency and corresponding vibration modes of the machine tool structure were obtained by using both FEM modal analysis and an experimental modal test(impulse hammer test). Both the theoretical and experiment analysis results showed good agreement with each other. Finally, some discussion and review, from the view point of resonance vibration and/or mode coupled chatter, were made based on the analysis results.

  • PDF

유한요소법과 가진시험법을 이용한 다기능 5축 복합가공기의 동특성 해석 및 동적 컴플라이언스 평가에 관한 연구 (A Study on Analysis of Dynamic Characteristics and Evaluation of Dynamic Compliance of a 5-Axis Multi-tasking Machine Tool by Using F.E.M and Exciter Test)

  • 장성현;최영휴;하종식
    • 한국공작기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.162-169
    • /
    • 2009
  • This paper describes a study on dynamic characteristics analysis and dynamic compliance evaluation of a 5-axis multi-tasking machine tool of ram-head type. Structural dynamics analysis and evaluation are necessary to machine tool design and development to secure good machine tool performance against tough and harsh machining conditions. In this study, natural frequencies and corresponding vibration modes of the machine tool structure were analyzed by using both F.E.M. modal analysis and impulse hammer test. Furthermore, dynamic compliance of the machine tool was analyzed by using F.E.M. and also measured by using a hydraulic exciter test. Both the theoretical analysis and experimental test results showed good agreement with each other.

충격 헤머 드릴의 성능향상을 위한 연구 (Research for performance improvement of impact hammer drill)

  • 박철우;김재환;한상용;권남진;강춘구;정영채
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.333-336
    • /
    • 2004
  • This paper presents performance of the impact hammer drill with coefficient of restitution, lubrication and friction, pressure leakage, damper efficiency and the general quality test. The novel measurement systems are introduced in order to get the reasonable data. The mechanism of strikers with inner pressure is revealed in the general quality test. Due to these factors we are able to make the computational analysis correctly.

  • PDF

충격 햄머 드릴의 성능향상을 위한 연구 (Research for Performance Improvement of Impact Hammer Drill)

  • 김재환;박철우;한상용;권남진;강춘구;정영채
    • 한국소음진동공학회논문집
    • /
    • 제15권5호
    • /
    • pp.536-541
    • /
    • 2005
  • This paper Presents the performance test of an impact hammer drill in conjunction with the parameter consideration of coefficient of restitution, lubrication and friction, pressure leakage, vibration damper and production quality. Novel measurement setups are innovated in order to get the Parameter data. The measured data are compared with the computational results, and this comparison gives a confidence on the computational model, which can be used for a optimal design of impact hammer drills.