• 제목/요약/키워드: Improvement of prediction performance

검색결과 440건 처리시간 0.029초

Bayesian Belief Network 활용한 균형성과표 기반 가정간호사업 성과예측모델 구축 및 적용 (Development and Application of a Performance Prediction Model for Home Care Nursing Based on a Balanced Scorecard using the Bayesian Belief Network)

  • 노원정;서문경애
    • 대한간호학회지
    • /
    • 제45권3호
    • /
    • pp.429-438
    • /
    • 2015
  • Purpose: This study was conducted to develop key performance indicators (KPIs) for home care nursing (HCN) based on a balanced scorecard, and to construct a performance prediction model of strategic objectives using the Bayesian Belief Network (BBN). Methods: This methodological study included four steps: establishment of KPIs, performance prediction modeling, development of a performance prediction model using BBN, and simulation of a suggested nursing management strategy. An HCN expert group and a staff group participated. The content validity index was analyzed using STATA 13.0, and BBN was analyzed using HUGIN 8.0. Results: We generated a list of KPIs composed of 4 perspectives, 10 strategic objectives, and 31 KPIs. In the validity test of the performance prediction model, the factor with the greatest variance for increasing profit was maximum cost reduction of HCN services. The factor with the smallest variance for increasing profit was a minimum image improvement for HCN. During sensitivity analysis, the probability of the expert group did not affect the sensitivity. Furthermore, simulation of a 10% image improvement predicted the most effective way to increase profit. Conclusion: KPIs of HCN can estimate financial and non-financial performance. The performance prediction model for HCN will be useful to improve performance.

SEM-ANN 2단계 분석에서 예측성능과 변수중요도의 비교연구 (Comparative Study of Prediction Performance and Variable Importance in SEM-ANN Two-stage Analysis)

  • 권순동;조의;방화룡
    • Journal of Information Technology Applications and Management
    • /
    • 제31권1호
    • /
    • pp.11-25
    • /
    • 2024
  • The purpose of this study is to investigate the improvement of prediction performance and changes in variable importance in SEM-ANN two-stage analysis. 366 cosmetics repurchase-related survey data were analyzed and the results were presented. The results of this study are summarized as follows. First, in SEM-ANN two-stage analysis, SEM and ANN models were trained with train data and predicted with test data, respectively, and the R2 was showed. As a result, the prediction performance was doubled from SEM 0.3364 to ANN 0.6836. Looking at this degree of R2 improvement as the effect size f2 of Cohen (1988), it corresponds to a very large effect at 110%. Second, as a result of comparing changes in normalized variable importance through SEM-ANN two-stage analysis, variables with high importance in SEM were also found to have high importance in ANN, but variables with little or no importance in SEM became important in ANN. This study is meaningful in that it increased the validity of the comparison by using the same learning and evaluation method in the SEM-ANN two-stage analysis. This study is meaningful in that it compared the degree of improvement in prediction performance and the change in variable importance through SEM-ANN two-stage analysis.

조기학습정지를 이용한 원전 SG세관 결함크기 예측 신경회로망의 성능 향상 (A performance improvement of neural network for predicting defect size of steam generator tube using early stopping)

  • 조남훈
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.2095-2101
    • /
    • 2008
  • In this paper, we consider a performance improvement of neural network for predicting defect size of steam generator tube using early stopping. Usually, neural network is trained until MSE becomes less than a prescribed error goal. The smaller the error goal, the greater the prediction performance for the trained data. However, as the error goal is decreased, an over fitting is likely to start during supervised training of a neural network, which usually deteriorates the generalization performance. We propose that, for the prediction of an axisymmetric defect size, early stopping can be used to avoid the over-fitting. Through various experiments on the axisymmetric defect samples, we found that the difference bet ween the prediction error of neural network based on early stopping and that of ideal neural network is reasonably small. This indicates that the error goal used for neural network training for the prediction of defect size can be efficiently selected by early stopping.

Quantum Computing Impact on SCM and Hotel Performance

  • Adhikari, Binaya;Chang, Byeong-Yun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권2호
    • /
    • pp.1-6
    • /
    • 2021
  • For competitive hotel business, the hotel must have a sound prediction capability to balance the demand and supply of hospitality products. To have a sound prediction capability in the hotel, it should be prepared to be equipped with a new technology such as quantum computing. The quantum computing is a brand new cutting-edge technology. It will change hotel business and even the whole world too. Therefore, we study the impact of quantum computing on supply chain management (SCM) and hotel performance. Toward the goal we have developed the research model including six constructs: quantum (computing) prediction, communication, supplier relationship, service quality, non-financial performance, and financial performance. The result of the study shows a significant influence of quantum (computing) prediction on hotel performance through the mediating role of SCM in the hotel. Quantum prediction is highly significant in enhancing the SCM in the hotel. However, the direct effect between the quantum prediction and hotel performance is not significant. The finding indicates that hotels which would install the quantum computing technology and utilize the quantum prediction could hugely benefit from the performance improvement.

A Study on the Evaluation Algorithm for Performance Improvement in PV Modules

  • Kim, Byung-ki;Choi, Sung-sik;Wang, Jong-yong;Oh, Seung-Taek;Rho, Dae-seok
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1356-1362
    • /
    • 2015
  • The location of PV systems in distribution system has been increased as one of countermeasure for global environmental issues. As the operation efficiency of PV systems is getting decreased year by year due to the aging phenomenon and maintenance problems, the optimal algorithm for state diagnosis in PV systems is required in order to improve operation performance in PV systems. The existing output prediction algorithms considering various parameters and conditions of PV modules could have complicated calculation process and then their results may have a possibility of significant prediction error. To solve these problems, this paper proposes an optimal prediction algorithm of PV system by using least square methods of linear regression analysis. And also, this paper presents a performance evaluation algorithm in PV modules based on the proposed optimal prediction algorithm of PV system. The simulation results show that the proposed algorithm is a practical tool of the state diagnosis for performance improvement in PV systems.

Performance Improvement and Power Consumption Reduction of an Embedded RISC Core

  • Jung, Hong-Kyun;Jin, Xianzhe;Ryoo, Kwang-Ki
    • Journal of information and communication convergence engineering
    • /
    • 제10권1호
    • /
    • pp.78-84
    • /
    • 2012
  • This paper presents a branch prediction algorithm and a 4-way set-associative cache for performance improvement of an embedded RISC core and a clock-gating algorithm with observability don’t care (ODC) operation to reduce the power consumption of the core. The branch prediction algorithm has a structure using a branch target buffer (BTB) and 4-way set associative cache that has a lower miss rate than a direct-mapped cache. Pseudo-least recently used (LRU) policy is used for reducing the number of LRU bits. The clock-gating algorithm reduces dynamic power consumption. As a result of estimation of the performance and the dynamic power, the performance of the OpenRISC core applied to the proposed architecture is improved about 29% and the dynamic power of the core with the Chartered 0.18 ${\mu}m$ technology library is reduced by 16%.

낮은 복잡도의 준무손실 압축을 위한 향상된 예측 기법 (Enhanced Prediction for Low Complexity Near-lossless Compression)

  • 손지덕;송병철
    • 방송공학회논문지
    • /
    • 제19권2호
    • /
    • pp.227-239
    • /
    • 2014
  • 본 논문은 영상처리용 SoC에서 외부 메모리 대역폭을 효과적으로 낮추기 위한 near-lossless 이미지 코더의 압축 성능을 향상시키는 새로운 예측 기법을 제안한다. 먼저, RGB 간 correlation을 고려하여 이미 복원된 G 성분을 기반으로 R과 B 성분을 효과적으로 예측하는 inter-color prediction을 수행한다. 다음으로 가변 블록 예측을 통해 예측 성능을 향상시킨다. 마지막으로 이전 프레임에서 sampling된 템플릿 dictionary를 이용해 G 성분 예측 시 최소한의 내부 메모리만을 사용하여 시간 축 예측 성능을 개선시키는 방법을 제안한다. 실험 결과를 통해 자연 영상의 경우 기존 기법 대비 평균적으로 약 30%의 코딩 효율 향상을 보이고, CG 영상의 경우에는 평균 60% 정도의 성능 향상을 보임을 알 수 있다.

도착관리시스템 궤적 예측 모듈의 성능 개선을 위한 궤적 예측 정확도 분석 방법 연구 (Study on Trajectory Prediction Accuracy Analysis Method for Performance Improvement of a Trajectory Prediction Module of Arrival Manager)

  • 오은미;김현경;은연주;전대근
    • 한국항공운항학회지
    • /
    • 제23권3호
    • /
    • pp.28-34
    • /
    • 2015
  • An analysis method of trajectory prediction has been suggested and the developed trajectory prediction module, which is an important functional component of the Arrival Manager (AMAN) of Jeju airport, has been tested by applying the suggested method. The objective of this method is to improve prediction performance of the trajectory prediction module. The trajectory prediction module predicts the trajectories based on the real-time track data and flight plans. Therefore, the suggested analysis method includes the simulation framework which is based on real-time playback, recording, and graphic display systems for testing. Besides, the definition of time error, which is a important index for the time based scheduling system, such as AMAN, is included in the suggested analysis method. An example of arrival time prediction accuracy improvement through the suggested analysis method has also been presented.

예측정확도 향상 전략을 통한 예측기반 병렬 게이트수준 타이밍 시뮬레이션의 성능 개선 (Performance Improvement of Prediction-Based Parallel Gate-Level Timing Simulation Using Prediction Accuracy Enhancement Strategy)

  • 양세양
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제5권12호
    • /
    • pp.439-446
    • /
    • 2016
  • 본 논문에서는 예측기반 병렬 이벤트구동 게이트수준 타이밍 시뮬레이션의 성능 개선을 위한 효율적인 예측정확도 향상 전략을 제안한다. 제안된 기법은 병렬 이벤트구동 로컬시뮬레이션들의 입력값과 출력값에 대한 예측을 이중으로 예측할 뿐만 아니라, 특별한 상황에서는 동적으로 예측할 수 있게 한다. 이중 예측은 첫번째 예측이 틀린 경우에 두번째 정적 예측 데이터로써 새로운 예측을 시도하게 되며, 동적 예측은 실제의 병렬 시뮬레이션 실행 과정 도중에 동적으로 축적되어진 지금까지의 시뮬레이션 결과를 예측 데이터로 활용하는 것이다. 제안된 두가지의 예측정확도 향상 기법은 병렬 시뮬레이션의 성능 향상의 제약 요소인 동기 오버헤드 및 통신 오버헤드를 크게 감소시킨다. 이 두가지 중요한 예측정확도 향상 방법을 통하여 6개의 디자인들에 대한 예측기반 병렬 이벤트구동 게이트수준 타이밍 시뮬레이션이 기존 통상적 방식의 상용 병렬 멀티-코어 시뮬레이션에 비하여 약 5배의 시뮬레이션 성능이 향상됨을 확인할 수 있었다.

혼합 예측기를 사용하는 효율적인 적재 명령어의 오퍼랜드 참조 기법 (An Improved Load Operand Referencing Scheme Using A Hybrid Predictor)

  • 최승교;조경산
    • 한국정보처리학회논문지
    • /
    • 제7권7호
    • /
    • pp.2196-2203
    • /
    • 2000
  • As processor's operational frequency increases and processors execute multiple instructions per cycle, the processor performance becomes more dependent on the load operand referencing latency and the data dependency. To reduce the operand fetch latency and to increase ILP by breaking the data dependency, we propose a value-address hybrid predictor using a reasonable size prediction buffer and analyse the performance improvement by the proposed predictor. Through the extensive simulation of 5 benchmark programs, the proposed hybrid prediction scheme accurately predicts 62.72% of all loads which are 12.64% higher than the value prediction scheme and show its cost-effectiveness compared to the address predition scheme. In addition, we analyse the performance improvement achieved by the stride management and the history of previous predictions.

  • PDF