• Title/Summary/Keyword: Improvement of prediction performance

Search Result 440, Processing Time 0.025 seconds

Development and Application of a Performance Prediction Model for Home Care Nursing Based on a Balanced Scorecard using the Bayesian Belief Network (Bayesian Belief Network 활용한 균형성과표 기반 가정간호사업 성과예측모델 구축 및 적용)

  • Noh, Wonjung;Seomun, GyeongAe
    • Journal of Korean Academy of Nursing
    • /
    • v.45 no.3
    • /
    • pp.429-438
    • /
    • 2015
  • Purpose: This study was conducted to develop key performance indicators (KPIs) for home care nursing (HCN) based on a balanced scorecard, and to construct a performance prediction model of strategic objectives using the Bayesian Belief Network (BBN). Methods: This methodological study included four steps: establishment of KPIs, performance prediction modeling, development of a performance prediction model using BBN, and simulation of a suggested nursing management strategy. An HCN expert group and a staff group participated. The content validity index was analyzed using STATA 13.0, and BBN was analyzed using HUGIN 8.0. Results: We generated a list of KPIs composed of 4 perspectives, 10 strategic objectives, and 31 KPIs. In the validity test of the performance prediction model, the factor with the greatest variance for increasing profit was maximum cost reduction of HCN services. The factor with the smallest variance for increasing profit was a minimum image improvement for HCN. During sensitivity analysis, the probability of the expert group did not affect the sensitivity. Furthermore, simulation of a 10% image improvement predicted the most effective way to increase profit. Conclusion: KPIs of HCN can estimate financial and non-financial performance. The performance prediction model for HCN will be useful to improve performance.

Comparative Study of Prediction Performance and Variable Importance in SEM-ANN Two-stage Analysis (SEM-ANN 2단계 분석에서 예측성능과 변수중요도의 비교연구)

  • Sun-Dong Kwon;Yi Zhao;Hua-Long Fang
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.1
    • /
    • pp.11-25
    • /
    • 2024
  • The purpose of this study is to investigate the improvement of prediction performance and changes in variable importance in SEM-ANN two-stage analysis. 366 cosmetics repurchase-related survey data were analyzed and the results were presented. The results of this study are summarized as follows. First, in SEM-ANN two-stage analysis, SEM and ANN models were trained with train data and predicted with test data, respectively, and the R2 was showed. As a result, the prediction performance was doubled from SEM 0.3364 to ANN 0.6836. Looking at this degree of R2 improvement as the effect size f2 of Cohen (1988), it corresponds to a very large effect at 110%. Second, as a result of comparing changes in normalized variable importance through SEM-ANN two-stage analysis, variables with high importance in SEM were also found to have high importance in ANN, but variables with little or no importance in SEM became important in ANN. This study is meaningful in that it increased the validity of the comparison by using the same learning and evaluation method in the SEM-ANN two-stage analysis. This study is meaningful in that it compared the degree of improvement in prediction performance and the change in variable importance through SEM-ANN two-stage analysis.

A performance improvement of neural network for predicting defect size of steam generator tube using early stopping (조기학습정지를 이용한 원전 SG세관 결함크기 예측 신경회로망의 성능 향상)

  • Jo, Nam-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2095-2101
    • /
    • 2008
  • In this paper, we consider a performance improvement of neural network for predicting defect size of steam generator tube using early stopping. Usually, neural network is trained until MSE becomes less than a prescribed error goal. The smaller the error goal, the greater the prediction performance for the trained data. However, as the error goal is decreased, an over fitting is likely to start during supervised training of a neural network, which usually deteriorates the generalization performance. We propose that, for the prediction of an axisymmetric defect size, early stopping can be used to avoid the over-fitting. Through various experiments on the axisymmetric defect samples, we found that the difference bet ween the prediction error of neural network based on early stopping and that of ideal neural network is reasonably small. This indicates that the error goal used for neural network training for the prediction of defect size can be efficiently selected by early stopping.

Quantum Computing Impact on SCM and Hotel Performance

  • Adhikari, Binaya;Chang, Byeong-Yun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.1-6
    • /
    • 2021
  • For competitive hotel business, the hotel must have a sound prediction capability to balance the demand and supply of hospitality products. To have a sound prediction capability in the hotel, it should be prepared to be equipped with a new technology such as quantum computing. The quantum computing is a brand new cutting-edge technology. It will change hotel business and even the whole world too. Therefore, we study the impact of quantum computing on supply chain management (SCM) and hotel performance. Toward the goal we have developed the research model including six constructs: quantum (computing) prediction, communication, supplier relationship, service quality, non-financial performance, and financial performance. The result of the study shows a significant influence of quantum (computing) prediction on hotel performance through the mediating role of SCM in the hotel. Quantum prediction is highly significant in enhancing the SCM in the hotel. However, the direct effect between the quantum prediction and hotel performance is not significant. The finding indicates that hotels which would install the quantum computing technology and utilize the quantum prediction could hugely benefit from the performance improvement.

A Study on the Evaluation Algorithm for Performance Improvement in PV Modules

  • Kim, Byung-ki;Choi, Sung-sik;Wang, Jong-yong;Oh, Seung-Taek;Rho, Dae-seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1356-1362
    • /
    • 2015
  • The location of PV systems in distribution system has been increased as one of countermeasure for global environmental issues. As the operation efficiency of PV systems is getting decreased year by year due to the aging phenomenon and maintenance problems, the optimal algorithm for state diagnosis in PV systems is required in order to improve operation performance in PV systems. The existing output prediction algorithms considering various parameters and conditions of PV modules could have complicated calculation process and then their results may have a possibility of significant prediction error. To solve these problems, this paper proposes an optimal prediction algorithm of PV system by using least square methods of linear regression analysis. And also, this paper presents a performance evaluation algorithm in PV modules based on the proposed optimal prediction algorithm of PV system. The simulation results show that the proposed algorithm is a practical tool of the state diagnosis for performance improvement in PV systems.

Performance Improvement and Power Consumption Reduction of an Embedded RISC Core

  • Jung, Hong-Kyun;Jin, Xianzhe;Ryoo, Kwang-Ki
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.78-84
    • /
    • 2012
  • This paper presents a branch prediction algorithm and a 4-way set-associative cache for performance improvement of an embedded RISC core and a clock-gating algorithm with observability don’t care (ODC) operation to reduce the power consumption of the core. The branch prediction algorithm has a structure using a branch target buffer (BTB) and 4-way set associative cache that has a lower miss rate than a direct-mapped cache. Pseudo-least recently used (LRU) policy is used for reducing the number of LRU bits. The clock-gating algorithm reduces dynamic power consumption. As a result of estimation of the performance and the dynamic power, the performance of the OpenRISC core applied to the proposed architecture is improved about 29% and the dynamic power of the core with the Chartered 0.18 ${\mu}m$ technology library is reduced by 16%.

Enhanced Prediction for Low Complexity Near-lossless Compression (낮은 복잡도의 준무손실 압축을 위한 향상된 예측 기법)

  • Son, Ji Deok;Song, Byung Cheol
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.227-239
    • /
    • 2014
  • This paper proposes an enhance prediction for conventional near-lossless coder to effectively lower external memory bandwidth in image processing SoC. First, we utilize an already reconstructed green component as a base of predictor of the other color component because high correlation between RGB color components usually exists. Next, we can improve prediction performance by applying variable block size prediction. Lastly, we use minimum internal memory and improve a temporal prediction performance by using a template dictionary that is sampled in previous frame. Experimental results show that the proposed algorithm shows better performance than the previous works. Natural images have approximately 30% improvement in coding efficiency and CG images have 60% improvement on average.

Study on Trajectory Prediction Accuracy Analysis Method for Performance Improvement of a Trajectory Prediction Module of Arrival Manager (도착관리시스템 궤적 예측 모듈의 성능 개선을 위한 궤적 예측 정확도 분석 방법 연구)

  • Oh, Eun-Mi;Kim, Hyounkyoung;Eun, Yeonju;Jeon, Daekeun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.3
    • /
    • pp.28-34
    • /
    • 2015
  • An analysis method of trajectory prediction has been suggested and the developed trajectory prediction module, which is an important functional component of the Arrival Manager (AMAN) of Jeju airport, has been tested by applying the suggested method. The objective of this method is to improve prediction performance of the trajectory prediction module. The trajectory prediction module predicts the trajectories based on the real-time track data and flight plans. Therefore, the suggested analysis method includes the simulation framework which is based on real-time playback, recording, and graphic display systems for testing. Besides, the definition of time error, which is a important index for the time based scheduling system, such as AMAN, is included in the suggested analysis method. An example of arrival time prediction accuracy improvement through the suggested analysis method has also been presented.

Performance Improvement of Prediction-Based Parallel Gate-Level Timing Simulation Using Prediction Accuracy Enhancement Strategy (예측정확도 향상 전략을 통한 예측기반 병렬 게이트수준 타이밍 시뮬레이션의 성능 개선)

  • Yang, Seiyang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.439-446
    • /
    • 2016
  • In this paper, an efficient prediction accuracy enhancement strategy is proposed for improving the performance of the prediction-based parallel event-driven gate-level timing simulation. The proposed new strategy adopts the static double prediction and the dynamic prediction for input and output values of local simulations. The double prediction utilizes another static prediction data for the secondary prediction once the first prediction fails, and the dynamic prediction tries to use the on-going simulation result accumulated dynamically during the actual parallel simulation execution as prediction data. Therefore, the communication overhead and synchronization overhead, which are the main bottleneck of parallel simulation, are maximally reduced. Throughout the proposed two prediction enhancement techniques, we have observed about 5x simulation performance improvement over the commercial parallel multi-core simulation for six test designs.

An Improved Load Operand Referencing Scheme Using A Hybrid Predictor (혼합 예측기를 사용하는 효율적인 적재 명령어의 오퍼랜드 참조 기법)

  • Choe, Seung-Gyo;Jo, Gyeong-San
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.7
    • /
    • pp.2196-2203
    • /
    • 2000
  • As processor's operational frequency increases and processors execute multiple instructions per cycle, the processor performance becomes more dependent on the load operand referencing latency and the data dependency. To reduce the operand fetch latency and to increase ILP by breaking the data dependency, we propose a value-address hybrid predictor using a reasonable size prediction buffer and analyse the performance improvement by the proposed predictor. Through the extensive simulation of 5 benchmark programs, the proposed hybrid prediction scheme accurately predicts 62.72% of all loads which are 12.64% higher than the value prediction scheme and show its cost-effectiveness compared to the address predition scheme. In addition, we analyse the performance improvement achieved by the stride management and the history of previous predictions.

  • PDF