• 제목/요약/키워드: Implicit Formulation

검색결과 107건 처리시간 0.018초

안정된 전자파 과도 산란해를 얻기 위한 시간영역 전장 적분방정식 해석 (Time-Domain Electric Field Integral Equation Solving for a Stable Solution of Electromagnetic Transient Scattering)

  • 정백호;김채영
    • 대한전자공학회논문지TC
    • /
    • 제39권4호
    • /
    • pp.201-208
    • /
    • 2002
  • 본 논문에서는 3 차원 임의 형태 도체의 지연 산란 응답을 얻기 위한, 새로운 시간영역 전장 적분방정식(Time-Domain Electric Field Integral Equation: TD-EFIE)을 제안한다. 자기 벡터 전위의 시간 미분항은 중앙 차분으로, 전기 스칼라 전위는 시간에 대한 평균을 취한 두 개의 항으로 근사하였다. 이로부터 도체에 의한 산란 지연 응답 해의 산출시, 기존의 방법보다 정확하고 더욱 안정된 해를 얻을 수 있었다. 제안된 방법의 자세한 정식화 과정을 보였으며, 주파수 영역에서의 이산 푸리에 역변환 (Inverse Discrete Fourier Transform: IDFT) 결과치와 제안된 방법에 의한 수치해를 각각 비교하였다.

내재적 경계 조건을 이용한 자유표면 유동 수치해석 (Numerical Simulation on the Free Surface using implicit boundary condition)

  • 이공희;백제현
    • 한국전산유체공학회지
    • /
    • 제4권1호
    • /
    • pp.19-26
    • /
    • 1999
  • This paper describes a numerical method for predicting the incompressible unsteady laminar three-dimensional flows with free-surface. The Navier-Stokes equations governing the flows have been discretized by means of finite-difference approximations, and the resulting equations have been solved via the SIMPLE-C algorithm. The free-surface is defined by the motion of a set of marker particles and the interface behaviour was investigated by means of a "Lagrangian" technique. Using the GALA concept of Spalding, the conventional mass continuity equation is modified to form a volumetric or bulk-continuity equation. The use of this bulk-continuity relation allows the hydrodynamic variables to be computed over the entire flow domain including both liquid and gas regions. Thus, the free-surface boundary conditions are imposed implicitly and the problem formulation is greatly simplified. The numerical procedure is validated by comparing the predicted results of a periodic standing waves problems with analytic solutions. The results show that this numerical method produces accurate and physically realistic predictions of three-dimensional free-surface flows.

  • PDF

수로망에서의 오염물질 확산의 1차원 예측 (One-D Model Prediction of Pollutant Transport at a Canal Network)

  • Lee, Jung-Lyul;Hsiang Wang
    • 한국해안해양공학회지
    • /
    • 제6권1호
    • /
    • pp.51-60
    • /
    • 1994
  • 여유고에서 오염물질의 이동과 확산을 효율적으로 모의할 수 있는 Lagragian 기법을 이용한 1차원 수치모델이 재발되어 미국 플로리다주의 Burnt Store Isles의 수로망(canal network)으로 유입되는 오염물질에 대해서 적용되었다. 본 수력학 모델은 음해법으로 수치해석되었다. 수치 영역은 크게 주수로와 여유고(storage)로 대별되며 지수로(finger canal)와 지류(tributary)들은 수로망을 단순화하기 위하여 여유고로 간주되었다. 수치실험 결과는 현장실험결과와 비교하여 비교적 잘 일치하고 있음을 보여준다.

  • PDF

평행평판 내의 지주에 의한 와동 유동에 관한 수치해석 (Numerical Computation of Vertex Behind a Bluff Body in the Flow between Parallel Plates)

  • 김동성;유영환
    • 대한기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.1163-1170
    • /
    • 1992
  • 본 연구에서는 자동차 전자제어식 공기유량계를 Fig.2와 같이 평행평판 안에 사각 지주가 있다고 단순화하고 공기는 이차원 비 압축성 점성유동으로 가정했다. 지배방정식은 유체 운동량방정식(navier-Stokes equation)을 와도 전달 방정식(vorti- city transport equation)과 유량 함수 방정식(stream function equation)으로 변환하 여 사용하였다. Peacemanrachford ADI 방법으로 수치해석 하였으며, 유량 함수 방정 식의 수렴성을 좋게 하기 위하여 Wachspress parameter를 사용하였다. 벽면의 경계 조건은 Briely의 4th-order Lagrange interpolation 방법을 따랐다. Reynolds 수 200과 500에서의 비정상유동(unsteady flow)을 계산하였으며, 유동이 정상상태(steady state)에 도달하였을 때에 유동을 교란시켜 와동 흘림(vortex shedding)을 구하였다.

결합 적분방정식을 이용한 삼차원 임의형태 도체 구조물의 전자파 지연산란 해석 (Analysis of Transient Scattering from Arbitrarily Shaped Three-Dimensional Conducting Objects Using Combined Field Integral Equation)

  • 정백호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권11호
    • /
    • pp.551-558
    • /
    • 2002
  • A time-domain combined field integral equation (CFIE) is presented to obtain the transient scattering response from arbitrarily shaped three-dimensional conducting bodies. This formulation is based on a linear combination of the time-domain electric field integral equation (EFIE) with the magnetic field integral equation (MFIE). The time derivative of the magnetic vector potential in EFIE is approximated using a central finite difference approximation and the scalar potential is averaged over time. The time-domain CFIE approach produces results that are accurate and stable when solving for transient scattering responses from conducting objects. The incident spectrum of the field may contain frequency components, which correspond to the internal resonance of the structure. For the numerical solution, we consider both the explicit and implicit scheme and use two different kinds of Gaussian pulses, which may contain frequencies corresponding to the internal resonance. Numerical results for the EFIE, MFIE, and CFIE are presented and compared with those obtained from the inverse discrete Fourier transform (IDFT) of the frequency-domain CFIE solution.

Damage and fatigue quantification of RC structures

  • Sadeghi, Kabir;Nouban, Fatemeh
    • Structural Engineering and Mechanics
    • /
    • 제58권6호
    • /
    • pp.1021-1044
    • /
    • 2016
  • Different versions of a damage index (DI) along with a formulation to find the number of cycles at failure due to fatigue, applicable to reinforced concrete (RC) structures are presented. These are based on an energetic analysis method and applicable to both global and local levels. The required data can be found either from the numerical simulation of structures or from the experimental tests. A computer program has been developed to simulate numerically the nonlinear behavior of RC columns under cyclic loading. The proposed DI gives a regular distribution of structural damages up to failure and is validated by the results of the tests carried out on RC columns subjected to cyclic loading. In general, the local and global damage indices give approximately similar results, while each of them has its own advantages. The advantage of the implicit version of DI is that, it allows the comparison of the results with those of the monotonic loading case, while the explicit version makes it possible to estimate the number of loading cycles at failure due to fatigue, and the advantage of the simplified version is that; the monotonic loading data is not needed for the cyclic loading case.

압전적층판의 열-압전-탄성 동적 비선형 작동특성 (Thermopiezoelastic Nonlinear Dynamic Characteristics of Piezolaminated Plates)

  • 오일권
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.836-842
    • /
    • 2005
  • Nonlinear dynamic characteristics of active piezolaminated plates are investigated with respect to the thermopiezoelastic behaviors. For largely deformed structures with small strain, the incremental total Lagrangian formulation is presented based on the virtual work principles. A multi-field layer-wise finite shell element is proposed for assuring high accuracy and non-linearity of displacement, electric and thermal fields. For dynamic consideration of thermopiezoelastic snap-through phenomena, the implicit Newmark's scheme with the Newton-Raphson iteration is implemented for the transient response of various piezolaminated models with symmetric or eccentric active layers. The bifurcate thermal buckling of symmetric structural models is first investigated and the characteristics of piezoelectric active responses are studied for finding snap-through piezoelectric potentials and the load-path tracking map. The thermoelastic stable and unstable postbuckling, thermopiezoelastic snap-through phenomena with several attractors are proved using the nonlinear time responses for various initial conditions and damping loss factors. Present results show that thermopiezoelastic snap-through phenomena can result in the difficulty of buckling and postbuckling control of intelligent structures.

IRK vs Structural Integrators for Real-Time Applications in MBS

  • Dopico D.;Lugris U.;Gonzalez M.;Cuadrado J.
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.388-394
    • /
    • 2005
  • Recently, the authors have developed a method for real-time dynamics of multibody systems, which combines a semi-recursive formulation to derive the equations of motion in dependent relative coordinates, along with an augmented Lagrangian technique to impose the loop closure conditions. The following numerical integration procedures, which can be grouped into the so-called structural integrators, were tested : trapezoidal rule, Newmark dissipative schemes, HHT rule, and the Generalized-${\alpha}$ family. It was shown that, for large multi body systems, Newmark dissipative was the best election since, provided that the adequate parameters were chosen, excellent behavior was achieved in terms of efficiency and robustness with acceptable levels of accuracy. In the present paper, the performance of the described method in combination with another group of integrators, the Implicit Runge-Kutta family (IRK), is analyzed. The purpose is to clarify which kind of IRK algorithms can be more suitable for real-time applications, and to see whether they can be competitive with the already tested structural family of integrators. The final objective of the work is to provide some practical criteria for those interested in achieving real-time performance for large and complex multibody systems.

전자동 자반건조기 제작에 이용할 Water Jet의 유동해석 모델 (Development of a Model for Fluid Analysis of Water Jet Using Automatic Javan(Salted-dry Seaweeds) Dryer Machine)

  • 김일수;박창언;정영재;손준식;남기우
    • 한국생산제조학회지
    • /
    • 제7권5호
    • /
    • pp.53-58
    • /
    • 1998
  • This paper concentrates on the development of a computational design program to determine nozzle size in water jet, combing the numerical optimization technique with the flow analysis code. To achieve the above objective, a two-dimensional model was developed for investigating the fluid flow in water jet and calculating the velocity and pressure distributions. The mathematical formulation as a standard ${k}-\varepsilon$ model was solved employing a general thermo fluid-mechanics computer program, PHOENICS code, which is based on the Semi-Implicit Method Pressure Linked Equations(SIMPLE) algorithm. The developed code was applied to water jet design to determine the nozzle size, and investigated the effect of the change of nozzle location. Calculated results showed that the flow pattern is not changed as the change of nozzle location.

  • PDF

境界積分法에 의한 軸對稱 彈性 問題의 解析 (Boundary Integral Equation Analysis of Axisymmetric Linear Elastic Problems)

  • 공창덕;김진우
    • 대한기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.787-797
    • /
    • 1986
  • 본 논문에서는 축대칭 선형 문제의 경계적분법에 대한 일반화한 정식화 과정 및 수치적 접근방법이 제시되었으며 정식화 과정 중 Navier 방정식의 기본해로부터 도 출되는 변위 및 표면적 Kernel을 구하는 Hankel 변환법을 이용한 $\ulcorner$직접축대칭접근법 $\lrcorner$과 3차원 Kevin 해로부터 원주경로 따라 적분한 $\ulcorner$3차원 접근법$\lrcorner$이 비교 검토되었 다.