• Title/Summary/Keyword: Implementation Phase

Search Result 1,238, Processing Time 0.025 seconds

Low Phase Noise Design and Implementation of X -Band Frequency Synthesizer for Radar Receiver (레이다 수신기용 X-밴드 주파수 합성기의 저 위상잡음설계 및 구현)

  • So, Won-Wook;Kang, Yeon-Duk;Lee, Taek-Kyung
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.1
    • /
    • pp.22-33
    • /
    • 1998
  • In the coherent-on-receiver radar system using the magnetron source, frequency synthesizer is employed as a STALO(Stable Local Oscillator) to keep the intermediate frequency stable. In this paper, X-band(8.4GHz~9.7GHz) single loop frequency synthesizer is designed and implemented by an indirect frequency synthesis technique. Phase comparison is performed by a digital PLL(Phase-Locked Loop) chip and the loop filter is designed for the low phase noise. The effects of loop component characteristics on the output phase noise are analyzed for single loop structures, and the calculated results are compared with the measured data.

  • PDF

FPGA Implementation of CORDIC-based Phase Calculator for Depth Image Extraction (Depth Image 추출용 CORDIC 기반 위상 연산기의 FPGA 구현)

  • Koo, Jung-youn;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.279-282
    • /
    • 2012
  • In this paper, a hardware architecture of phase calculator for 3D image processing is proposed. The designed phase calculator, which adopts a pipelined architecture to improve throughput, performs arctangent operation using vectoring mode of CORDIC algorithm. Fixed-point MATLAB modeling and simulations are carried out to determine the optimized bit-widths and number of iteration. Phase calculator designed in Verilog HDL is verified by emulating the restoration of virtual 3D data using MATLAB/Simulink and FPGA-in-the-loop verification.

  • PDF

Single-Phase Inverter for Grid-Connected and Intentional Islanding Operations in Electric Utility Systems

  • Lidozzi, Alessandro;Lo Calzo, Giovanni;Solero, Luca;Crescimbini, Fabio
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.704-716
    • /
    • 2016
  • Small distributed generation units are usually connected to the main electric grid through single-phase voltage source inverters. Grid operating conditions such as voltage and frequency are not constant and can fluctuate within the range values established by international standards. Furthermore, the requirements in terms of power factor correction, total harmonic distortion, and reliability are getting tighter day by day. As a result, the implementation of reliable and efficient control algorithms, which are able to adjust their control parameters in response to changeable grid operating conditions, is essential. This paper investigates the configuration topology and control algorithm of a single-phase inverter with the purpose of achieving high performance in terms of efficiency as well as total harmonic distortion of the output current. Accordingly, a Second Order Generalized Integrator with a suitable Phase Locked Loop (SOGI-PLL) is the basis of the proposed current and voltage regulation. Some practical issues related to the control algorithm are addressed, and a solution for the control architecture is proposed, based on resonant controllers that are continuously tuned on the basis of the actual grid frequency. Further, intentional islanding operation is investigated and a possible procedure for switching from grid-tied to islanding operation and vice-versa is proposed.

Design and Implementation of Photovoltaic Power Conditioning System using a Current-based Maximum Power Point Tracking

  • Lee, Sang-Hoey;Kim, Jae-Eon;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.606-613
    • /
    • 2010
  • This paper proposes a novel current-based maximum power point tracking (CMPPT) method for a single-phase photovoltaic power conditioning system (PV PCS) by using a modified incremental conductance method. The CMPPT method simplifies the entire control structure of the power conditioning system and uses an inherent current source characteristic of solar cell arrays. Therefore, it exhibits robust and fast response under a rapidly changing environmental condition. Digital phase locked loop technique using an all-pass filter is also introduced to detect the phase of grid voltage, as well as the peak voltage. Controllers of dc/dc boost converter, dc-link voltage, and dc/ac inverter are designed for coordinated operation. Furthermore, a current control using a pseudo synchronous d-q transformation is employed for grid current control with unity power factor. A 3 kW prototype PV PCS is built, and its experimental results are given to verify the effectiveness of the proposed control schemes.

A Simple Resonant DC Link Snubber-Assisted Bi-directional Three-phase PWM Converter for Battery Energy Storage Systems

  • Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.133-139
    • /
    • 2002
  • In this paper, a prototype of an active auxiliary quasi-resonant DC link (QRDCL) snubber assisted voltage source bidirectional power converter (AC to DC and DC to AC) operating at zero voltage soft-switching (BVS) PWM nlode is presented for a Battery Energy Storage System (BESS). The operating principle of this QRDCL circuit and multifunctional control-based converter system, including PWM inverter mode in which energy flows from the battery bank to the three-phase utility-grid in addition to an active PWM converter mode in which energy flows from the utility-grid to the battery banks are described respectively by the control implementation on the basis of d-q coordinate plane transformation. The multifunctional operation characteristics of this three-phase ZVS PWM bi-directional converter with QRDCL is demonstrated fer a BESS under the power conditioning and processing schemes of energy supply mode and energy storage mode, and compared with a conventional three-phase hard switching PWM bi-directional converter for a BESS. The effectiveness of the three-phase ZVS PWM hi-directional converter with QRDCL is proven via the simulation analysis.

A High-speed/Low-power CSD Linear Phase FIR Filter Structure Using Vertical Common Sub-expression (수직 공통패턴을 사용한 고속/저전력 CSD 선형위상 FIR 필터 구조)

  • 장영범;양세정
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4A
    • /
    • pp.324-329
    • /
    • 2002
  • In the high-speed/low-power digital filter applications like wireless communication systems, canonical signed digit(CSD) linear phase finite impulse response(FIR) filter structures are widely investigated. In this paper, we propose a high-speed/low-power CSD linear phase FIR filter structure using vertical common sub-expression. In the conventional linear phase CSD filter, horizontal common sub-expressions are utilized due to the inherent horizontal common sub-expression of symmetrical filter coefficients. We use the fact that their MSBs are also equal since adjacent filter coefficients have similar values in the linear phase filter Through the examples, it is shown that our proposed structure is more efficient in case that precision of implementation is lower, and tap length are longer.

IMPLEMENTATION OF A SECOND-ORDER INTERPOLATION SCHEME FOR THE CONVECTIVE TERMS OF A SEMI-IMPLICIT TWO-PHASE FLOW ANALYSIS SOLVER (물-기체 2상 유동 해석을 위한 Semi-Implicit 방법의 대류항에 대한 2차 정확도 확장)

  • Cho, H.K.;Lee, H.D.;Park, I.K.;Jeong, J.J.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.13-22
    • /
    • 2009
  • A two-phase (gas and liquid) flow analysis solver, named CUPID, has been developed for a realistic simulation of transient two-phase flows in light water nuclear reactor components. In the CUPID solver, a two-fluid three-field model is adopted and the governing equations are solved on unstructured grids for flow analyses in complicated geometries. For the numerical solution scheme, the semi-implicit method of the RELAP5 code, which has been proved to be very stable and accurate for most practical applications of nuclear thermal hydraulics, was used with some modifications for an application to unstructured non-staggered grids. This paper is concerned with the effects of interpolation schemes on the simulation of two-phase flows. In order to stabilize a numerical solution and assure a high numerical accuracy, the second-order upwind scheme is implemented into the CUPID code in the present paper. Some numerical tests have been performed with the implemented scheme and the comparison results between the second-order and first-order upwind schemes are introduced in the present paper. The comparison results among the two interpolation schemes and either the exact solutions or the mesh convergence studies showed the reduced numerical diffusion with the second-order scheme.

Three-phase Transformer Model and Parameter Estimation for ATP

  • Cho Sung-Don
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.302-307
    • /
    • 2006
  • The purpose of this paper is to develop an improved three-phase transformer model for ATP and parameter estimation methods that can efficiently utilize the limited available information such as factory test reports. In this paper, improved topologically-correct duality-based models are developed for three-phase autotransformers having shell-form cores. The problem in the implementation of detailed models is the lack of complete and reliable data. Therefore, parameter estimation methods are developed to determine the parameters of a given model in cases where available information is incomplete. The transformer nameplate data is required and relative physical dimensions of the core are estimated. The models include a separate representation of each segment of the core, including hysteresis of the core, ${\lambda}-i$ saturation characteristic and core loss.

A Novel Calibration Method Using Zadoff-Chu Sequence and Its FPGA Implementation (Zadoff-Chu sequence를 이용한 실시간 Calibration 알고리즘과 FPGA 구현)

  • Jang, Jae Hyun;Sun, Tiefeng;Yang, Hyun Wook;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.3
    • /
    • pp.59-65
    • /
    • 2013
  • This paper presents a novel calibration method for a base station system adopting an antenna array. The proposed technique utilizes Zadoff-Chu sequence, which is included in the LTE pilot signal periodically, in order to compute the phase characteristic of each antenna channel. As the Zadoff-Chu sequence exhibits an excellent autocorrelation characteristic, it is possible for the receiving base station to retrieve the Zadoff-Chu sequence transmitted from each mobile terminal. In addition, we can obtain the phase characteristic of each antenna channel, which is the ultimate goal of the calibration procedure. The proposed calibration algorithm has been implemented using an FPGA (Field Programmable Gate Array). We have applied the proposed algorithm to an array consisting of 2 antenna elements for simplicity. the phase value implied to the first and second antenna path is very accurately calculated from the proposed procedure. From the experimental test, the proposed method provides accurate calibration results.

Fast Holographic Image Reconstruction Using Phase-Shifting Assisted Depth Detection Scheme for Optical Scanning Holography

  • Lee, Munseob;Min, Gihyeon;Kim, Nac-Woo;Lee, Byung Tak;Song, Je-Ho
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.599-605
    • /
    • 2016
  • For the implementation of a real-time holographic camera, fast and automatic holographic image reconstruction is an essential technology. In this paper, we propose a new automatic depth-detection algorithm for fast holography reconstruction, which is particularly useful for optical scanning holography. The proposed algorithm is based on the inherent phase difference information in the heterodyne signals, and operates without any additional optical or electrical components. An optical scanning holography setup was created using a heterodyne frequency of 4 MHz with a 500-mm distance and 5-mm depth resolution. The reconstruction processing time was measured to be 0.76 s, showing a 62% time reduction compared to a recent study.