• Title/Summary/Keyword: Implant-abutment

Search Result 504, Processing Time 0.021 seconds

Effect of Implant Preload on the Marginal Bone Stresses Studied by Three Dimensional Finite Element Aanalysis (임플란트 고정체와 지대주 간의 전하중 크기가 골응력에 미치는 영향에 대한 유한요소해석)

  • Nam, Hyo-Jun;Jo, Kwang-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.2
    • /
    • pp.127-138
    • /
    • 2012
  • This study is to assess the effect of preload level on the stress development at the marginal cortical bone surrounding implant neck. A finite element model was created for a single implant placed in the lower jaw bone. An external load of 100N was applied on the top of abutment at 30 degree with the implant axis in lingo-buccal direction. Five different preloads, i.e. 0, 200, 400, 600, 800N were applied to the abutment stem to investigate if and/or how the preload affects on the marginal bone stress. Differences in the marginal bone stress were recorded depending on the level of preload. On the other hand, the tensile stress on the marginal cortical bone decreased in models of higher preload. Preloads between abutment/fixture can increase compressive stresses in the marginal cortical bone although the amount may be insignificant as compared to those generated by functional forces.

Evaluating usability of and satisfaction with two types of dental CAD software (두 종류 치과 임플란트 캐드 소프트웨어의 사용자 편의성 및 만족도 비교)

  • Kim, Seong-Min;Lee, Wan-Sun;Son, Keunbada;Lee, Kyu-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.35 no.1
    • /
    • pp.11-19
    • /
    • 2019
  • Purpose: This study evaluated the usability of and satisfaction with two types of computer-aided design (CAD) software among users who had experience with dental implant CAD software and those who did not. Materials and Methods: Dental technicians (n = 20) who had previous experience with dental implant CAD Software and students from the College of Dentistry (n = 12) who had never designed implant custom abutments were asked to evaluate two types of CAD Software, Exocad and Deltanine. In addition, the participants were asked to fill out a structured questionnaire (Section 1: Entering basic information and retrieving files; Section 2: Setting conditions before abutment design; Section 3: Setting abutment design; and Section 4: Overall satisfaction). For the statistical analysis of the collected data, Mann-Whitney U test was used (${\alpha}=.05$). Results: The ease of design and satisfaction with the implant CAD Software, evaluated with respect to 21 statements divided into four Stages, were significantly higher for Exocad in both groups for Secion 1. For Sections 2 and 3, participants with experience evaluated Deltanine to be significantly better. For Section 4, both groups evaluated Exocad Software to be better. Conclusion: Overall, the Exocad Software was evaluated as having better usability and offering greater satisfaction. However, in terms of performance in the core of the design process, i.e. Sections 2 and 3, Deltanine was rated higher by the experienced users. Thus, if the user interface design parts are supplemented, Deltanine CAD Software could be put to a wider use in clinics.

Influence of bearing surface angle of abutment screw on mechanical stability of joint in the conical seal design implant system (내부 원추형 연결형태 임플란트에서 지대주 나사머리의 좌면각도가 연결부 기계적 안정성에 미치는 영향)

  • Kim, Joo-Hyeun;Huh, Jung-Bo;Yun, Mi-Jung;Kang, Eun-Sook;Heo, Jae-Chan;Jeong, Chang-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.3
    • /
    • pp.206-214
    • /
    • 2014
  • This study is to evaluate how different bearing surface angles of abutment screw affect the mechanical stability of the joint in the conical seal design implant system. Materials and Methods: Internal connection type regular implants, two-piece cemented type abutments and tungsten carbide/carbon-coated titanium alloy abutment screws were selected. Titanium alloy screws with conical ($45^{\circ}$) and flat ($90^{\circ}$) head designs which fit on to abutment were fabricated. The abutments were tightened to implants with 30 Ncm by digital torque gauge. The loading was applied once to the central axis of abutment. The mean axial displacement was measured using micrometer before and after the tightening and loading (n = 5). The abutment was tightened to implants with 30 Ncm and T-shape stainless steel crown was cemented. Then the change in the amount of reverse-torque was measured after the repeated loading to the central axis, and the place 5 mm away from the central axis. Compressive bending and fatigue strength were measured at the place 5 mm away from the central axis (n = 5). Results: Both groups showed the largest axial displacement when abutment screw tightening and total displacement was greater in the flat head group compared to conical head group (P < 0.05). However, there were no significant differences in reverse torque value, compressive bending and fatigue strength (P > 0.05). Conclusion: Within the limitations of this study, the abutment screw head design had no effect on two groups regarding the joint stability, however the conical head design affected the settlement of abutment resulting in the reduced total displacement.

Multiple fixed implant-supported prosthesis using temporary denture and scannable healing abutment: a case report (임시의치와 스캔가능한 치유지대주를 이용한 고정성 임플란트 보철 수복 증례)

  • Hyung-Jun Kim;Hyeon Kim;Woo-hyung Jang;Kwi-dug Yun;Sang-Won Park;Hyun-Pil Lim
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.39 no.4
    • /
    • pp.250-259
    • /
    • 2023
  • The use of digital technology in fixed prosthetic treatment using implants enables predictive treatment through diagnosis and virtual surgery by integrating clinical and radiological information of patients. Existing digital scanning methods require several components to be removed, such as removing the healing abutment and connecting the scan body. In the scannable healing abutment developed in consideration of this point, scanning is performed directly on the healing abutment, maintaining soft tissue sealing and simplifying scanning. Digital technology can also be used when obtaining the intermaxillary relationship. Recently, various digital technologies have been reported to acquire the intermaxillary relationship of edentulous patients using surgical guides, patient-specific scanning devices, or scans of the inside of temporary dentures. In this case, the implant-supported fixed prosthesis treatment was performed through scanning the scannable healing abutment and the inner side of the temporary denture to obtain the intermaxillary relationship, thereby simplifying the treatment process and obtaining aesthetically and functionally excellent clinical results.

Tensile Strength of Provisional Cement on Natural Abutment and Metal Abutment (자연 지대치와 금속 지대치 상에서 임시 접착제의 인장력에 관한 연구)

  • Lee, Il-Kwon;Oh, Sang-Chun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • STATEMENT OF PROBLEM: Tensile strength of metal crown cemented with provisional cement have shown clinically difference between metal abutment of implant and natural abutment. PURPOSE: This study was tested to compare the tensile strength of provisional cement on the natural abutment and metal abutment. MATERIAL AND METHODS: Out of the 20 premolars that were selected for this experiment, each 10 were prepared of abutments by chamfer and rounded shoulder margin and then duplicated to produce 20 metal abutments that were same to natural teeth. Then, crowns were fabricated to fit the total 40 natural & metal abutments to be cemented by cavitec, to be added of regular, repetitive vertical load, and to be measured of tensile strength by using Universal Test Machine. RESULTS: There was statistically significant difference in the tensile strength between the crowns cemented to the natural & metal abutments, but no statistically significant difference was observed between the chamfer and the shoulder gingival margin of the each abutments. CONCLUSIONS: Tensile strength of metal teeth is greater about 2 more times than that of natural teeth when it is cemented with Cavitec.

Mechanical Properties and Cross-sectional Surface Evaluation of Dental Ceramic Abutment (치과용 세라믹 임플란트 지대주의 기계적 특성 및 절단면 평가)

  • Hwang, Jun Ho;Kwon, Sung-Min;Choi, Sung Gi;Sung, Mi Ae;Lee, Kyu-Bok
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.309-315
    • /
    • 2018
  • The purpose of this study is to assess the mechanical properties of the ceramic abutment with washer. In this study, ceramic abutment were used, tested with $30^{\circ}$ compression load, shear fatigue, adaptation accuracy test(rotation angle, contact interval), removal torque force test, torsional breaking force test. The $30^{\circ}$ compression load was 729 N, the shear fatigue load was 275 N, adaptation accuracy test of rotation angle was within $3^{\circ}$, contact interval within $10{\mu}m$, and removal torque force test value is $18.88N{\cdot}cm$, torsional breaking force test value is $35.52N{\cdot}cm$. Ceramic abutment with a washer fitted have sufficient mechanical strength and may be substituted for titanium abutment.

The Comparison of the Retention of the Full Veneer Casted Gold Crowns with Different Implant Abutment Shapes and Types of Cements (임플란트 지대주 형태와 시멘트 종류에 따른 전부주조금관의 유지력 비교)

  • Jung, Jae-Wook;Kim, Jee-hwan;Kim, Sun-jai;Moon, Hong-suk;Shim, June-sung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.4
    • /
    • pp.403-415
    • /
    • 2009
  • The purpose of the study is to establish the effect of different abutment shapes and types of cements on the retention of the full veneer casted gold crowns. Metal dies that has the similar shape with the implant abutment were manufactured using a short(5mm) and long(10mm) dies with different convergence angles. Metal dies and gold crowns, which were made from the metal dies, were cemented with Temp-bond, Temp-bond mixed with petroleum jelly, ZPC and Premier implant cement. After that, these were tested for tensile force at the point of separation. The effect of convergence angle changes of different cement types on the retention was studied as well as the effects of the cement type changes with different convergence angles on the retention. In addition, study about the marginal gap of Premier implant cement used for this experiment was conducted. The results are as followed under the in-vitro experimental limits; 1. The retention of the Temp-bond mixed with petroleum jelly decreased as the convergence angle increased, and the retention was weakest among the cements. 2. The retention of ZPC decreased as convergence angle increased. When convergence angle was 5 degrees, ZPC showed stronger retention than Premier implant cement. 3. Premier implant cement had the weakest retention when the convergence angle was 5 degrees but when the convergence angle was 10 degrees, it had the strongest retention. As the angle increased more than 10 degrees, the retention decreased. 4. Premier implant cement showed bigger marginal gap when the convergence angle was 5 degrees than 10 degrees under the experimental condition.

FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS ACCORDING TO PLATFORM WIDTH OF FIXTURE (임플란트 고정체의 platform의 크기에 따른 유한요소법적 응력분석)

  • Chung Kyung-Min;Chung Chae-Heon;Jeong Seung-Mi
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.5
    • /
    • pp.674-688
    • /
    • 2003
  • Statement of Problem : With increasing demand of the implant-supported prosthesis, it is advantageous to use the different platform width of the fixture according to bone quantity and quality of the patients. Purpose : The purpose of this study was to assess the loading distributing characteristics of two implant designs according to each platform width of fixture, under vertical and inclined loading using finite element analysis. Material and method : The two kinds of finite element models were designed according to each platform width of future (4.1mm restorative component x 11.5mm length, 5.0mm wide-diameter restorative component x 11.5mm length). The crown for mandibular first molar was made using UCLA abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction, 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction and 200N at the buccal cusp in a 300 transverse direction individually Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment screw. Results : The stresses were concentrated mainly at the cortex in both vertical and oblique load ing but the stresses in the cancellous bone were low in both vertical and oblique loading. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading. Increasing the platform width of the implant fixture decreased the stress in the supporting bone, future and abutment screw. Increased the platform width of fixture decreased the stress in the crown and platform. Conclusion : Conclusively, this investigation provides evidence that the platform width of the implant fixture directly affects periimplant stress. By increasing the platform width of the implant fixture, it showed tendency to decreased the supporting bone, future and screw. But, further clinical studies are necessary to determine the ideal protocol for the successful placement of wide platform implants.

The study on the survival rates and crestal bone changes around the implants (임플란트 주위 골변화와 생존율에 대한 연구)

  • Choi, Hyun-Suk;Chung, Hyun-Ju;Kim, Ok-Su;Kim, Young-Jun
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.303-315
    • /
    • 2004
  • The success and failure of dental implants depends on various factors such as patient's systemic status, quantity and quality of surrounding bone, presence or absence of marginal infection and mechanical loading condition. The measurement of crestal bone changes around the implants is implemental to evaluate the success and long-term prognosis of the implant. This study was to evaluate the cumulative survival rate of the implants which had been placed in the Department of Periodontics, Chonnam National University Hospital between 1992 and 2003, and to observe the crestal bone loss around the implants which had at least 2 consecutive periapical radiographs after connecting the transmucosal abutment. The radiographs were scanned and digitalized, and the crestal bone levels on the mesial and distal surface of implants were measured using Image analyzer (Image Pro Plus, Media Cybernetics, USA), immediately after implant placement, at 2nd surgery, and 3 months, 6 months, 1 year, and every year thereafter. Any bone loss was not observed during the period between the 1stand 2nd surgery, and the bone loss was 0.86 ${\pm}$ 0.92 mm for the first year of loading after connecting the transmucosal abutment. After 1 year of loading, annual bone loss was 0.1 ${\pm}$ 0.27 mm, and total bone loss was 0.90 ${\pm}$ 0.80 mm (during the average follow-up periods of 22.5 ${\pm}$ 25.6 Mos), The implant, with smooth surface, in the mandible, and with the fixed bridge prosthesis showed greater bone loss, compared to those, with the rough surface, in the maxilla and with single crown. In systemically diseased patients (including DM or osteoporosis), the greater bone loss was observed. The cumulative survival rate among 432 implants was 94.10% for 7 years. Among 15 failed implants, 9 implants were removed due to mobility from disintegration of bone-implant interface. From this results, crestal bone loss around the implants were greatest during 1 year after transmucosal abutment connection, and various factors could affect peri-implant bone loss. To prevent and predict the bone loss around the implants and improve the prognosis, further comprehensive maintenance and follow-up schedules are required.

Finite element analysis on the connection types of abutment and fixture (수종의 내부연결형 임플란트에서 연결부의 형태에 따른 응력분포의 유한요소 분석)

  • Jung, Byeong-Hyeon;Lee, Gyeong-Je;Kang, Dong-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.119-127
    • /
    • 2012
  • Purpose: This study was performed to compare the stress distribution pattern of abutment-fixture connection area using 3-dimensional finite element model analysis when 5 different implant systems which have internal connection. Materials and methods: For the analysis, a finite element model of implant was designed to locate at first molar area. Stress distribution was observed when vertical load of 200 N was applied at several points on the occlusal surfaces of the implants, including center, points 1.5 mm, 3.0 mm away from center and oblique load of 200 N was applied $30^{\circ}$ inclined to the implant axis. The finite element model was analyzed by using of 3G. Author (PlassoTech, California, USA). Results: The DAS tech implant (internal step with no taper) showed more favorable stress distribution than other internally connected implants. AS compare to the situations when the loading was applied within the boundary of implants and an oblique loading was applied, it showed higher equivalent stress and equivalent elastic strain when the loading was applied beyond the boundary of implants. Regardless of loading condition, the abutments showed higher equivalent stress and equivalent elastic strain than the fixtures. Conclusion: When the occlusal contact is afforded, the distribution of stress varies depending on the design of connection area and the location of loading. More favorable stress distribution is expected when the contact load was applied within the diameter of fixtures and the DAS tech implant (internal step with no tapering) has more benefits than the other design of internally connected implants.