• 제목/요약/키워드: Implant type

검색결과 800건 처리시간 0.039초

하악 임플란트 overdenture에서 anchorage system이 하중전달에 미치는 영향 (EFFECT OF ANCHORAGE SYSTEMS ON LOAD TRANSFER WITH MANDIBULAR IMPLANT OVERDENTURES : A THREE-DIMENSIONAL PHOTOELASTIC STRESS ANALYSIS)

  • 김진열;전영찬;정창모
    • 대한치과보철학회지
    • /
    • 제40권5호
    • /
    • pp.507-524
    • /
    • 2002
  • Load transfer of implant overdenture varies depending on anchorage systems that are the design of the superstructure and substructure and the choice of attachment. Overload by using improper anchorage system not only will cause fracture of the framework or screw but also may cause failure of osseointegration. Choosing anchorage system in making prosthesis, therefore, can be considered to be one of the most important factors that affect long-term success of implant treatment. In this study, in order to determine the effect of anchorage systems on load transfer in mandibular implant overdenture in which 4 implants were placed in the interforaminal region, patterns of stress distribution in implant supporting bone in case of unilateral vertical loading on mandibular left first molar were compared each other according to various types of anchorage system using three-dimensional photoelastic stress analysis. The five photoelastic overdenture models utilizing Hader bar without cantilever using clips(type 1), cantilevered Hader bar using clips(type 2), cantilevered Hader bar with milled surface using clips(type 3), cantilevered milled-bar using swivel-latchs and frictional pins(type 4), and Hader bar using clip and ERA attachments(type 5), and one cantilevered fixed-detachable prosthesis(type 6) model as control were fabricated. The following conclusions were drawn within the limitations of this study, 1. In all experimental models. the highest stress was concentrated on the most distal implant supporting bone on loaded side. 2. Maximum fringe orders on ipsilateral distal implant supporting bone in a ascending order is as follows: type 5, type 1, type 4, type 2 and type 3, and type 6. 3. Regardless of anchorage systems. more or less stresses were generated on the residual ridge under distal extension base of all overdenture models. To summarize the above mentioned results, in case of the patients with unfavorable biomechanical conditions such as not sufficient number of supporting implants, short length of the implant and unfavorable antero-posterior spread. selecting resilient type attachment or minimizing distal cantilever bar is considered to be appropriate methods to prevent overloading on implants by reducing cantilever effect and gaining more support from the distal residual ridge.

상악 임플란트 overdenture에서 anchorage system과 의치상 구개피개가 하중전달에 미치는 영향 (EFFECT OF ANCHORAGE SYSTEMS AND PALATAL COVERAGE OF DENTURE BASE ON LOAD TRANSFER WITH MAXILLARY IMPLANT-SUPPORTING OVERDENTURES : A THREE-DIMENSIONAL PHOTOELASTIC STRESS ANALYSIS)

  • 제홍지;전영찬;정창모;임장섭;황재석
    • 대한치과보철학회지
    • /
    • 제42권4호
    • /
    • pp.397-411
    • /
    • 2004
  • Purpose: The purpose of this study was to determine the effect of anchorage systems and palatal coverage of denture base on load transfer in maxillary implant-supported overdenture. Material and methods: Maxillary implant -supported overdentures in which 4 implants were placed in the anterior region of edentulous maxilla were fabricated, and stress distribution patterns in implant supporting bone in the case of unilateral vertical loading on maxillary right first molar were compared with each other depending on various types of anchorage system and palatal coverage extent of denture base using three-dimensional photoelastic stress analysis. Two photoelastic overdenture models were fabricated in each anchorage system to compare with the palatal coverage extent of denture base, as a result we got eight models : Hader bar using clips(type 1), cantilevered Hader bar using clips(type 2), Hader bar using clip and ERA attachments(type 3), cantilevered milled-bar using swivel-latchs and frictional pins(type 4). Result: 1. In all experimental models, the highest stress was concentrated on the most distal implant supporting bone on loaded side. 2. In every experimental models with or without palatal coverage of denture base, maximum fringe orders on the distal ipsilateral implant supporting bone in an ascending order is as follows; type 3, type 1, type 4, and type 2. 3. Each implants showed compressive stresses in all experimental models with palatal coverage of denture base, but in the case of those without palatal coverage of denture base, tensile stresses were observed in the distal contralateral implant supporting bone. 4. In all anchorage system without palatal coverage of denture base, higher stresses were concentrated on the most distal implant supporting bone on loaded side. 5. The type of anchorage system affected in load transfer more than palatal coverage extent of the denture base. Conclusion: To the results mentioned above, in the case of patients with unfavorable biomechanical conditions such as not sufficient number of supporting implants, short length of the implant, and poor bone quality, selecting a resilient type attachment or minimizing the distal cantilevered bar is considered to be an appropriate method to prevent overloading on implants by reducing cantilever effect and gaining more support from the distal residual ridge.

골유착성 임플란트를 중간 지대치로 사용한 고정성 보철물의 응력분석 (A TWO DIMENSIONAL STRESS ANALYSIS OF FIXED PROSTHESIS WITH OSSEOINTEGRATED IMPLANT AS AN INTERMEDIATE ABUTMENT)

  • 박상수;방몽숙
    • 대한치과보철학회지
    • /
    • 제31권4호
    • /
    • pp.611-624
    • /
    • 1993
  • The purpose of this study was to analyze the stress distribution of the natural teeth, the implant, the prosthesis and the supporting tissue according to the types of implant and connection modality in the five-unit fixed partial denture with a implant pier abutment. A Two dimensional stress analysis model was constructed to represent a mandible missing the first and second premolars and first molar. The model contained a canine and second molar as abutment teeth and implant pier abutments with and without stress-absorbing element. Finite element models were created and analyzed using software ANSYS 4.4A for IBM 32bit personal computer. The results obtained were as follows. 1. Implant group, compared to the natural teeth group, showed a maximum principal stress at the superior portion of implants and a stress concentration at :he neck and end portion. 2. Maximum principal stress and maximum Von Mises stress were always lower in the case of rigid connection than nonrigid connection. 3. A cylinder type implant with stress absorbing element and screw type implant were generally similar in the stress distribution pattern. 4. A screw type implant, compared to the cylinder type implant, showed a relatively higher stress concentration at both neck and end portion of it. 5. Load B cases showed higher stress concentration on the posterior abutments in the case of nonrigid connector than rigid connector. 6. A maximum displacement was always lower in the case of rigid connection than nonrigid connection. These results suggest that osseointegrated implant can be used as an intermediate abutment.

  • PDF

골밀도 평가방법과 임플란트 안정성 변화의 관찰 (Observation of the change of the dental implant stability and bone density evaluation methods)

  • 고석민;박성재;김인수;송승일;이인경
    • Journal of Periodontal and Implant Science
    • /
    • 제39권2호
    • /
    • pp.185-192
    • /
    • 2009
  • Purpose: The aim of this study was to examine the correlation of the subjective and the objective evaluation of edentulous ridge bone quality, and to evaluate the change of the dental implant stability in each bone density group for early healing period after implant installation. Methods: Sixty-seven implants(Osstem implant$^{(R)}$, Seoul, Korea) were included in this study. We evaluated the bone density by 2 methods. The one was the subjective method which was determined by practitioner s tactile sense, the other was the objective bone type was based on Hounsfield units. The implant stability in each bone type group was assessed by resonance frequency analyzer(Osstell mentor$^{(R)}$). Data were analyzed for the change of the implant stability, and they were compared to verify the difference of groups at the time of installation, 2, 6, 10, 14 weeks postoperatively. Spearman's correlation was used to demonstrate the correlation between the subjective and the objective evaluation of the bone density, and analysis of variance(ANOVA) was used to analyze the differences of implant stability at each time point. Results: There was no close relation between the subjective and the objective evaluation of the bone density(r=0.57). In the subjective groups, there was statistically significant difference between the type 1 and 3 at 10 weeks and between the type 2 and 3 at 14 weeks. In the objective groups, there was no statistically significant difference between the D 1, 2, 3, 4, and 5 group with regard to RFA from baseline to 14 weeks(P>0.1). Conclusions: The implant stability increased over time during the study, and it was improved with bone density proportionally after 2weeks postoperatively. It is recommended that the decision of bone density is base on Hounsfield unit for implant loading time.

상악에 식립된 Frialit-2 임플란트의 성공률에 대한 후향적 연구 (Retrospective analysis of $frialit-2^{(R)}$ implant system placed in maxilla)

  • 채경준;정의원;김창성;심준성;조규성;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제35권2호
    • /
    • pp.449-460
    • /
    • 2005
  • Objectives Aim of this study was to evaluate the clinical use and the efficacy of Frialit-2 implant system. Experimental Methods Fifty nine patients received placement of Frilalit-2 implants(137 implants) in their maxillary anterior and posterior sites(40 and 97 implants). Intraoral & clinical examination, chart review and radiographs were taken from each patient. Results 1. The total implant survival rate was 92.7% after a mean follow-up period of 19.9 months. 2. The implant survival rate placed in anterior region was 97.5%. 3. The implant survival rate placed in posterior region was 90.7%. 4. The implant survival rate placed in atrophic posterior maxilla with advanced technique (GBR, Sinus elevation) was 87.2%. 5. The implant survival rate placed in type N(D4) bone was 82%, while 95.7% in type III (D3), and 100% in type II(D2) bone. 6. Most of the failed implants(7 of 10) were removed during the maintenance stage after prosthodontic treatment. Conclusion It was concluded that Frialit-2 implant could be used satisfactorily in the esthetic anterior region, but the use in the posterior region, especially with poor bone quality and quantity, further studies are needed.

FEM을 이용한 cement type hip implant의 Stem 단면형상에 따른 응력분석 (The Stress analysis for a sectional stem shape of cement type hip implant using the finite element method)

  • 박흥석;이문규;전흥재;최귀원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.651-652
    • /
    • 2006
  • The choice of suitable hip implant is one of important factors in total hip replacement (THR). In clinical view points, improper adaptation of hip implant might cause abnormal stress distribution to the bone, which can shorten the lifespan of replaced hip implant. Currently, interest in custom-designed hip implants has increased as studies reveals the importance of geometric shape of patient's femur in modeling and designing custom hip implants. In this study, we have developed the custom-designed hip implant models with various sizes in hip implant, and the stress distribution in the bone was analyzed using Finite Elements methods. It was found that minimizing the gap between implant stem and femoral cavity is crucial to minimize stress concentration in the bone.

  • PDF

DEVELOPMENT OF PREDICTABLE STABILITY TEST FOR ASSESSMENT OF OPTIMUM LOADING TIME IN DENTAL IMPLANT

  • Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young;Lee, Joo-Hee;Kwon, Ji-Yong
    • 대한치과보철학회지
    • /
    • 제46권6호
    • /
    • pp.628-633
    • /
    • 2008
  • STATEMENT OF PROBLEM: The application of a simple, clinically applicable noninvasive test to assess implant stability are considered highly desirable. So far there is still a controversy about correlation of various tests and implant stability. PURPOSE: In order to assess implant stability, the development of a new method is critical. It's possible to assess implant stability by calculating energy and angular momentum during implant installation. The purpose of this study is to evaluate the correlation of energy and implant stability. MATERIAL AND METHODS: Twenty three implants were installed in two different types of pig bone. Type I bone was retrieved from the distal aspect of the rib, with more cortical bone. Type II bone came from a more proximal region with less cortical components and a higher content of bone marrow and spongeous trabeculae. Insertion torque, removal torque, ISQ values and angular momentum and energy were measured. Pearson Correlation test was done to analyze the relation between RFA, maximum insertion torque, mean insertion torque, bone type, energy and removal torque. RESULTS: Type I bone showed higher removal torque than type II bone. Energy value was significantly correlated with maximum insertion torque and mean insertion torque. RFA values were related with insertion torques but the significance was lower than Energy value. CONCLUSION: Within the limitation of this study energy values were considered clinically predictable method to measure the implant stability.

Effect of impression coping and implant angulation on the accuracy of implant impressions: an in vitro study

  • Jo, Si-Hoon;Kim, Kyoung-Il;Seo, Jae-Min;Song, Kwang-Yeob;Park, Ju-Mi;Ahn, Seung-Geun
    • The Journal of Advanced Prosthodontics
    • /
    • 제2권4호
    • /
    • pp.128-133
    • /
    • 2010
  • PURPOSE. The purpose of this study was to compare the accuracy of the implant master cast according to the type (pick-up, transfer) and the length (long, short) of the impression copings. MATERIALS AND METHODS. The metal master cast was fabricated with three internal connection type implant analogs (Osstem GS III analog), embedded parallel and with $10^{\circ}$ of mesial angulation to the center analog. Four types of impression coping were prepared with different combinations of types (transfer, pick-up) and lengths (long, short) of the coping. The impressions were made using vinyl polysiloxane (one step, heavy + light body) with an individual tray, and 10 impressions were made for each group. Eventually, 40 experimental casts were produced. Then, the difference in the distance between the master cast and the experimental cast were measured, and the error rate was determined. The analysis of variance was performed using the SPSS (v 12.0) program (${\alpha}$= .05), and the statistical significance was set at P < .05. RESULTS. The ANOVA showed that the pick-up type impression coping exhibited a significantly lower error rate than the transfer type. However, no significant difference was observed with respect to the length of the impression coping. Additionally, no significant difference was observed between the parallel and mesial angulated groups. CONCLUSION. Within the limitations of this study, the pick-up type impression coping exhibited a more accurate implant master cast than the transfer type in parallel group. The accuracy of the implant master cast did not differ for different lengths of impression coping of at least 11 mm. Additionally, the accuracy of the implant cast was not different for the parallel and $10^{\circ}$ mesial angulated groups.

FEA model analysis of the effects of the stress distribution of saddle-type implants on the alveolar bone and the structural/physical stability of implants

  • Kong, Yoon Soo;Park, Jun Woo;Choi, Dong Ju
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제38권
    • /
    • pp.9.1-9.9
    • /
    • 2016
  • Background: As dental implants receive masticatory stress, the distribution of stress is very important to peri-implant bone homeostasis and implant survival. In this report, we created a saddle-type implant and analyzed its stability and ability to distribute stress to the surrounding bone. Methods: The implants were designed as a saddle-type implant (SI) that wrapped around the alveolar bone, and the sizes of the saddles were 2.5, 3.5, 4.5, and 5.5 mm. The X and Y displacement were compared to clarify the effects of the saddle structures. The control group consisted of dental implants without the saddle design (CI). Using finite element modeling (FEM), the stress distribution around the dental implants was analyzed. Results: With saddle-type implants, saddles longer than 4.5 mm were more effective for stress distribution than CI. Regarding lateral displacement, a SI of 2.5 mm was effective for stress distribution compared to lateral displacement. ASI that was 5.6 mm in length was more effective for stress distribution than a CI that was 10 mm in length. Conclusions: The saddle-type implant could have a bone-gaining effect. Because it has stress-distributing effects, it might protect the newly formed bone under the implant.

지대주 연결 형태와 골질에 따른 저작압이 임프란트 주위골내 응력분포에 미치는 영향 (Study on the stress distribution depending on the bone type and implant abutment connection by finite element analysis)

  • 박현수;임성빈;정진형;홍기석
    • Journal of Periodontal and Implant Science
    • /
    • 제36권2호
    • /
    • pp.531-554
    • /
    • 2006
  • Oral implants must fulfill certain criteria arising from special demands of function, which include biocompatibility, adequate mechanical strength, optimum soft and hard tissue integration, and transmission of functional forces to bone within physiological limits. And one of the critical elements influencing the long-term uncompromise functioning of oral implants is load distribution at the implant- bone interface, Factors that affect the load transfer at the bone-implant interface include the type of loading, material properties of the implant and prosthesis, implant geometry, surface structure, quality and quantity of the surrounding bone, and nature of the bone-implant interface. To understand the biomechanical behavior of dental implants, validation of stress and strain measurements is required. The finite element analysis (FEA) has been applied to the dental implant field to predict stress distribution patterns in the implant-bone interface by comparison of various implant designs. This method offers the advantage of solving complex structural problems by dividing them into smaller and simpler interrelated sections by using mathematical techniques. The purpose of this study was to evaluate the stresses induced around the implants in bone using FEA, A 3D FEA computer software (SOLIDWORKS 2004, DASSO SYSTEM, France) was used for the analysis of clinical simulations. Two types (external and internal) of implants of 4.1 mm diameter, 12.0 mm length were buried in 4 types of bone modeled. Vertical and oblique forces of lOON were applied on the center of the abutment, and the values of von Mises equivalent stress at the implant-bone interface were computed. The results showed that von Mises stresses at the marginal. bone were higher under oblique load than under vertical load, and the stresses were higher at the lingual marginal bone than at the buccal marginal bone under oblique load. Under vertical and oblique load, the stress in type I, II, III bone was found to be the highest at the marginal bone and the lowest at the bone around apical portions of implant. Higher stresses occurred at the top of the crestal region and lower stresses occurred near the tip of the implant with greater thickness of the cortical shell while high stresses surrounded the fixture apex for type N. The stresses in the crestal region were higher in Model 2 than in Model 1, the stresses near the tip of the implant were higher in Model 1 than Model 2, and Model 2 showed more effective stress distribution than Model.