• Title/Summary/Keyword: Impedance extraction

Search Result 51, Processing Time 0.038 seconds

Method of Material Constants Extraction in Thin-Film Bulk Acoustic Resonator(FBAR) using Genetic Algorithm (유전자 알고리즘을 이용한 압전 박막 음향 공진기에서의 물질 상수 추출 기법)

  • 이정흠;정재용;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.323-329
    • /
    • 2003
  • In this paper, the method of material constants extraction in a thin-film bulk acoustic resonator(FBAR) using a genetic algorithm(GA) is proposed. The material constants are extracted from the input impedance of a FBAR by a GA optimizer. The characteristics of the FBAR input impedance affected by the material constants were studied to decide the fitness function for GA. As a result, the fitness was estimated by the series- and parallel -resonance frequencies and the FBAR bandwidth, as determined from the input impedance of the FBAR. A flowchart for the GA and a procedure fur the proposed extraction method are explained in detail, and the results of the material constants extraction are presented.

Studies on Extrinsic Resistance Extraction Method of PHEMT Using Bias-Dependence of Impedance (바이어스에 따른 임피던스 특성을 이용한 PHEMT의 기생 저항 추출방법에 관한 연구)

  • Park, Duk-Soo;An, Dan;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.2
    • /
    • pp.59-64
    • /
    • 2004
  • In this paper, a Cold PHEMT equivalent circuit was proposed, and it is applied to extract extrinsic resistances. By using the proposed Cold PHEMT equivalent circuit, the variation of impedance with frequency and bias were mainly emphasized. Especially, the convergence of impedance with frequency and the change in impedance with bias were carefully analyzed, which may be used for fast extraction of extrinsic resistances. The proposed extraction method demonstrated improving of small signal model accuracy than conventional extraction method.

1-10GHz, Input Impedance Parameter Extraction Method of SiGe HBT (1-l0GHz 대역에서의 SiGe HBT′s 소신호 입력 임피던스 Parameter 추출 방법)

  • Kim, Do-Hyung;Lee, Sang-Heung;Koo, Yong-Seo;An, Chul
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.245-248
    • /
    • 2000
  • In this paper, we present a high-performance SiGe HBT's RF input impedance parameter extraction method. The SiGe HBT has emitter width of 0.5${\mu}{\textrm}{m}$ and length of 6${\mu}{\textrm}{m}$. S-parameter has been measured with the collector current of 1~3㎃ using on-wafer RF measuring system . The pre-calculation method was used in order to overcome the local minimum problem. This method enabled us to extract a RF(1~10㎓) input impedance parameter.

  • PDF

Electrical impedance-based crack detection of SFRC under varying environmental conditions

  • Kang, Man-Sung;An, Yun-Kyu;Kim, Dong-Joo
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • This study presents early crack detection of steel fiber-reinforced concrete (SFRC) under varying temperature and humidity conditions using an instantaneous electrical impedance acquisition system. SFRC has the self-sensing capability of electrical impedance without sensor installation thanks to the conductivity of embedded steel fibers, making it possible to effectively monitor cracks initiated in SFRC. However, the electrical impedance is often sensitively changed by environmental effects such as temperature and humidity variations. Thus, the extraction of only crack-induced feature from the measured impedance responses is a crucial issue for the purpose of structural health monitoring. In this study, the instantaneous electrical impedance acquisition system incorporated with SFRC is developed. Then, temperature, humidity and crack initiation effects on the impedance responses are experimentally investigated. Based on the impedance signal pattern observation, it is turned out that the temperature effect is more predominant than the crack initiation and humidity effects. Various crack steps are generated through bending tests, and the corresponding impedance damage indices are extracted by compensating the dominant temperature effect. The test results reveal that propagated cracks as well as early cracks are successfully detected under temperature and humidity variations.

A Study on the Classification of Steam Generator Tube Defects Using an Improved Feature Extraction (개선된 특징 추출을 이용한 원전SG 세관 결함 패턴 분류에 관한 연구)

  • Jo, Nam-Hoon;Lee, Hyang-Beom
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.27-35
    • /
    • 2009
  • In this paper, we study the classification of steam generator tube defects using an improved feature extraction. We consider 4 axisymmetric defect patterns of tube: I-In type, I-Out type, V-In type, and V-Out type. Through numerical analysis program based on finite element modeling, 400 ECT signals are generated by varying width and depth of each defect type. From those generated ECT signals, we propose new feature vectors that include an angle between the two points where the Maximum impedance and half the Maximum impedance, and angles between Maximum impedance point and 10%, 20%, 30%, 40% of Maximum impedance points. Also, multi-layer perceptron with one hidden layer is used to classify the defect patterns. Through the computer simulation study, it is shown that the proposed method achieves an improved defect classification performance in terms of Maximum Error and mean square Error.

Chip Impedance Evaluation Method for UHF RFID Transponder ICs over Absorbed Input Power

  • Yang, Jeen-Mo;Yeo, Jun-Ho
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.969-971
    • /
    • 2010
  • Based on a de-embedding technique, a new method is proposed which is capable of evaluating chip impedance behavior over absorbed power in flip-chip bonded UHF radio frequency identification transponder ICs. For the de-embedding, four compact co-planar test fixtures, an equivalent circuit for the fixtures, and a parameter extraction procedure for the circuit are developed. The fixtures are designed such that the chip can absorb as much power as possible from a power source without radiating appreciable power. Experimental results show that the proposed modeling method is accurate and produces reliable chip impedance values related with absorbed power.

The study on Reactor Parameters of Atmosphere Plasma Power Supply (대기압 플라즈마 전원장치의 반응기 파라메터에 관한 연구)

  • Lee, Woo-Cheol;Lee, Taeck-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.6
    • /
    • pp.59-65
    • /
    • 2012
  • This paper presents a digital control solution which can extract the reactor parameters in atmosphere plasma power supply. The critical issue of the atmosphere plasma power supply is a impedance matching. For the impedance matching, the reactor parameters should be known, but the parameters depend on the reactors. Therefore, the reactor parameters have to measure for the impedance matching. The proposed method is performed by detection of phase difference between inverter voltage and current, and extraction of impedance through active, reactive power.

Study of Corrosion-Induced Failure Mechanisms of Epoxy Coated Reinforcing Steel (Parts I and II)

  • Lee, Seung-kyoung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.396-401
    • /
    • 1995
  • Epoxy coated reinforcing steels (ECRs) were acquired from ten sources and coatings from each source were initially characterized in terms of defects, thickness, solvent extraction weight loss and hardness. Testing involved exposure in three aqueous solutions at elevated temperature (8$0^{\circ}C$) and in chloride-contaminated concrete slabs under outdoor exposure, It was found that the density and size of coating defects was the promary factor affecting ECR performance. The equivalent circuit analysis using electrochemical impedance spectroscopy (EIS) data indicated that the impedance response for well-performing ECR specimens showed no signs of active degradation at the interface although diffusional processes similar to those noted for poorly performing bars occurred here. Experimental results also indicated a relationship between corrosion behavior and bar source. Weight loss upon solvent extraction correlated with impedance reduction from hot water exposure. Coating defects during most of the tests, especially in high pH solutions containing chloride ions. ECRs with excessive coating defects, either initially present or ones which developed in service, performed poorly in every test category regardless of source. Forms of coating failure were extensive rusting at defects, blistering, wet adhesion loss, cathodic delamination, underfilm corrosion and coating cracks. These occurred sequentially or concurrently, depending on the condition of the ECR and nature of the environment

  • PDF

Fault Location and Classification of Combined Transmission System: Economical and Accurate Statistic Programming Framework

  • Tavalaei, Jalal;Habibuddin, Mohd Hafiz;Khairuddin, Azhar;Mohd Zin, Abdullah Asuhaimi
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2106-2117
    • /
    • 2017
  • An effective statistical feature extraction approach of data sampling of fault in the combined transmission system is presented in this paper. The proposed algorithm leads to high accuracy at minimum cost to predict fault location and fault type classification. This algorithm requires impedance measurement data from one end of the transmission line. Modal decomposition is used to extract positive sequence impedance. Then, the fault signal is decomposed by using discrete wavelet transform. Statistical sampling is used to extract appropriate fault features as benchmark of decomposed signal to train classifier. Support Vector Machine (SVM) is used to illustrate the performance of statistical sampling performance. The overall time of sampling is not exceeding 1 1/4 cycles, taking into account the interval time. The proposed method takes two steps of sampling. The first step takes 3/4 cycle of during-fault and the second step takes 1/4 cycle of post fault impedance. The interval time between the two steps is assumed to be 1/4 cycle. Extensive studies using MATLAB software show accurate fault location estimation and fault type classification of the proposed method. The classifier result is presented and compared with well-established travelling wave methods and the performance of the algorithms are analyzed and discussed.

Extraction of Even and Odd Impedance for a Coupled-line Waveguide Structure using the Vector finite Element Method (벡터유한요소법을 이용한 결합선로 구조를 갖는 도파관 구조의 우.기모드 임피던스 추출)

  • Kim, Young-Tae;Park, Jun-Seok;Ahn, Dal;Kim, Hysons-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2216-2218
    • /
    • 2000
  • This paper deals with finite element eigenvalue problem using electric field intensity to extract the even and odd impedance for a coupled-line waveguide structure. Calculations for the even-and-odd impedance of a coupled line waveguide structure are achieved based on the relative impedance concept for a waveguide with electric and magnetic wall containes.

  • PDF