• Title/Summary/Keyword: Impact Tensile Test

Search Result 333, Processing Time 0.033 seconds

Evaluation of Interfacial and Mechanical Properties of GF/p-DCPD Composites with Different Sizing Agents (사이징제에 따른 유리섬유/폴리디사이클로펜타디엔 복합재료의 계면물성 및 기계적 물성 평가)

  • Kim, Jong-Hyun;Kwon, Dong-Jun;Shin, Pyeong-Su;Park, Ha-Seung;Baek, Yeong-Min;Park, Joung-Man
    • Composites Research
    • /
    • v.31 no.2
    • /
    • pp.57-62
    • /
    • 2018
  • Interfacial and mechanical properties of neat and two sizing agents coated glass fiber (GF)/polydicyclopentadiene (p-DCPD) composites were evaluated at room and low temperatures, $25^{\circ}C$ and $-20^{\circ}C$. Sizing agents of GFs were extracted using acetone and compared via FT-IR. Surface energy and work of adhesion between GFs and p-DCPD were calculated by dynamic contact angle measurement. Mechanical properties of different GFs were determined using single fiber tensile test and interfacial properties of single GF reinforced DCPD strip were determined using cyclic loading tensile test. Mechanical properties of GFs/p-DCPD composites at room and low temperatures were determined using tensile, compressive, and Izod impact tests. Interfacial and mechanical properties were different with sizing agents of GFs and the optimized condition of sizing agent was found.

Performance Evaluation of Dense Graded Asphalt Mixture Modfied by Pyrolysis Carbon Black (열분해 카본블랙 사용량에 따른 밀입도 아스팔트 혼합물 성능 평가)

  • Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.732-737
    • /
    • 2016
  • Using the pyrolyzed carbon black (PCB) from waste tires, the performance of 13 mm dense-graded hot mix asphalt was evaluated. The Marshall mix design was carried out and the measured optimal asphalt content was 5.8%. The impact resonant test was conducted to obtain the elastic modulus and damping ratio of the hot mix asphalt. The elastic modulus of HMA increased with increasing amount of PCB. On the other hand, there was no significant change in the damping ratio. The Marshall mix design, indirect tensile test, permanent deformation test, and program analysis were carried out. The strength ratio of the PCB modified asphalt mixtures was within 10%. More 10% of PCB was not good for the permanent deformation of hot mix asphalt. From the pavement design program, the use of 5% PCB in hot mix asphalt showed a decrease in the top-down crack, bottom-up crack, and permanent deformation. Judging from the limited test and analysis, the use of 5% PCB is good for enhancing the pavement performance.

Explosion Bulge Test of 800 MPa Grade Pre-Heat Free Welding Consumables (800 MPa급 무예열 용접재료의 폭파변형시험)

  • Park, Tae-Won;Song, Young-Buem;Kim, Jin-Young;Park, Chul-Kyu;Kim, Hee-Jin
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.40-40
    • /
    • 2009
  • The Cu-bearing PFS-700 steel which has yield strength over 700 MPa was developed to replace the existing submarine structural material, HY-100. PFS-700 steel has good combination of mechanical properties and superior weldability which can be welded without pre-heating before welding. Application PFS-700 steel to submarine or battle ship will give a great reduction of cost by removing or lowing pre-heating. To develop pre-heat free welding consumables that matches and take advantage of PFS-700 steel, new welding consumables have been designed for the GMAW, SAW processes and explosion bulge test(EBT) were conducted to see the reliability of welded structure. All welding was conducted without pre-heating before welding, the inter-pass temperatures were below $50^{\circ}C$ for SAW50 and $150^{\circ}C$ for GMAW and SAW150. All EBT specimens show over 14% reduction of thickness without through-thickness crack or propagation of crack to the hole-down area. Tensile properties for all welding conditions show higher(GMAW) or similar values(SAW50, SAW150) to the base metal. Charpy impact values for the weld metal also show 163.5J(GMAW), 95.4J(SAW50) and 69.0J(SAW150), which meet the goal, 50J, of this project.

  • PDF

Investigation on Explosion Bulge Test Results of 800 MPa Grade Pre-heat Free Welding Consumables (800 MPa급 무예열 용접재료의 폭파변형성능에 관한 연구)

  • Park, Tae-Won;Song, Young-Beum;Kim, Jin-Young;Park, Chul-Gyu;Kim, Hee-Jin
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.80-86
    • /
    • 2009
  • The Cu-bearing PFS-700 steel which has yield strength over 700 MPa was developed to replace the existing submarine structural material, HY-100. The PFS-700 steel has a combination of good mechanical properties and superior weldability. Becaus of that, it can be welded without pre-heating. The application of PFS-700 steel to submarine or battle ship will give a great reduction of cost by omitting pre-heating or lowering pre-heat temperature. To develop pre-heating free welding consumables that match and take advantage of PFS-700 steel, new welding consumables have been designed for the GMAW, SAW processes and explosion bulge test(EBT) was conducted to see the reliability of welded structure. All welds were made without pre-heating, and the inter-pass temperature was below $50^{\circ}C$ for SAW50 and $150^{\circ}C$ for GMAW and SAW150. All EBT specimens show over 14% thickness reduction without through-thickness crack or crack propagation to the hole-down area. Tensile properties for all welding conditions show higher(GMAW) or similar values(SAW50, SAW150) to the base metal. Charpy impact values for the weld metal also show 163.5J(GMAW), 95.4J(SAW50) and 69.0J(SAW150), which meet the goal(higher than 50J) of this project.

Mechanical Properties in Rice Husk Ash and OPC Concrete with Coconut Fiber Addition Ratios (코코넛 섬유 혼입률에 따른 RHA 및 OPC 콘크리트의 역학적 특성)

  • Lee, Min-Hi;Kwon, Seung-Jun;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.117-124
    • /
    • 2015
  • Currently, Eco-friendly construction materials are widely utilized for reducing $CO_2$ emission in construction. Furthermore various engineering fibers are also added for improving a brittle behavior in concrete. In the paper, concrete specimens with 10% and 20% replacement ratio with RHA (Rice Husk Ash) are prepared, and engineering behaviors in RHA and OPC concrete are evaluated with different addition of coconut fiber from 0.125~0.375% of volume ratio. Several basic tests including compressive strength, tensile strength, flexural strength, impact resistance, and bond strength are performed, and crack width and deflections are also measured in flexural test. RHA is evaluated to be very effective in strength development and 0.125% of fiber addition leads significant improvement in tensile strength, ductility, and crack resistance. RHA and coconut fiber are effective construction material both for reutilization of limited resources and performance improvement in normal concrete.

Microstructure of Squeeze-cast Aluminum Matrix Composite Reinforced by Fine Steel Wires (용탕단조한 미세강선 보강 알루미늄 복합재료의 미세조직에 대한 고찰)

  • Jeong, Bong-Yong;Lee, In-Woo;Park, Heung-Il;Kim, Jun-Su;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.14 no.5
    • /
    • pp.455-463
    • /
    • 1994
  • Aluminum matrix composites reinforced by fine steel wires were fabricated by squeeze casting process. Preforms made of fine steel wires were prepared with different surface conditions, namely uncoated(TN), carbo-nitriding treated(TT), and brass coated(TA). Squeeze casting were performed under the pressure of $1500kg/cm^2$ for 3min. during solidification, and pouring temp. of the melt being $750^{\circ}C$ and the steel mold being preheated at $250^{\circ}C$. Microstructural characteristics were evaluated, particularly concerned with the effect of the surface conditions of the preforms. The results obtained from this study are like these. TN specimens show partially non-wetted regions, due to easy formation of oxides on the surface of the fine steel wires. TT specimens show no interfacial reaction between the steel wires and the aluminum alloy matrix, possibly due to the formation of carbo-nitrided zone on the surface of the steel wires. TA specimens show excellent wettabillity between the reinforced steel wires and the aluminum alloy matrix and very thin interfacial zone is formed between them. During the solution hardening treatment of TA specimens, thickness of the interfacial reaction zones were increased with the solution treating time. TA specimens show typical ductile fracture in tensile test, but TT specimens show brittle fracture possibly due to the formation of the brittle hard surface on the steel wires during carbo-nitriding treatments. TA specimens which were reinforced with 40 vol.% of the fine steel wires exhibit high tensile strength of $77.1kgf/mm^2$ and impact value of $8.1kgf-m/cm^2$.

  • PDF

Effects of the Cooling Rate After Annealing Treatment on the Microstructure and the Mechanical Properties of Super-Duplex Stainless Steel (슈퍼 듀플렉스 스테인레스강의 미세조직 및 기계적 특성에 미치는 열처리 후 냉각속도의 영향)

  • Kwon, Gi-Hyoun;Na, Young-Sang;Yoo, Wee-Do;Lee, Jong-Hoon;Park, Yong-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.735-743
    • /
    • 2012
  • The aim of this study was to analyze the effect of the cooling rate after heat treatment on the microstructure and mechanical properties of 2507 duplex stainless steels. Heat treatment was carried out at $1050^{\circ}C$ for 1 hr, followed by controlled cooling. The cooling rates were $175.6{\times}10^{-3}^{\circ}C/s$, $47.8{\times}10^{-3}^{\circ}C/s$, $33.3{\times}10^{-3}^{\circ}C/s$, $16.7{\times}10^{-3}^{\circ}C/s$, $11.7{\times}10^{-3}^{\circ}C/s$, $5.8{\times}10^{-3}^{\circ}C/s$ and $2.8{\times}10^{-3}^{\circ}C/s$, which resulted in variations of the microstructure, such as the fractional change of the ferrite phase and sigma phase formation. Fatigue, hardness, impact and tensile tests were performed on the specimens with different cooling rates. The precipitation of the ${\sigma}$ phase caused a hardness increase and a sharp decrease of toughness and tensile elongation. The fatigue limit of the sample with a cooling rate of $5.8{\times}10^{-3}^{\circ}C/s$ was 26 MPa higher than that of the sample with a cooling rate of $175.6{\times}10^{-3}^{\circ}C/s$. Our observations of the fracture surface confirmed that the higher fatigue resistance of the specimen with a cooling rate of $5.8{\times}10^{-3}^{\circ}C/s$ was caused by the delay of the fatigue crack growth, in addition to higher yield strength.

Material Performance Evaluation of PolyUrea for Structural Seismic Retrofitting (구조물 내진 보강용 폴리우레아의 재료 성능 평가)

  • Cho, Chul-Min;Choi, Ji-Hun;Rhee, Seung-Hoon;Kim, Tae-Kyun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.131-139
    • /
    • 2017
  • Recently, earthquakes have frequently occurred near Korean peninsula. An experimental study is needed for developing a reinforcing method for seismic strengthening to apply to RC structures. Recently, PolyUrea (PU) as structural reinforcement materials has been receiving great interest from construction industry. The reinforcing effect of PU appeared to be excellent under blast and impact as well as earthquakes. In this study, Flexible Type PolyUrea (FTPU) developed in preceding studies was modified to develop Stiff Type PolyUrea (STPU) by varying the ratio of the components of prepolymer and hardener of FTPU. The material performance evaluation has been performed through hardening time, tensile strength and percent elongation test, pull-off test, and shore hardness test. The experimental results showed that STPU has higher tensile strength and lower elongation than FTPU. Therefore, STPU coating agent can be used for semi-permanent products. By using STPU with Fiber-Reinforced Polymer (FRP) on concrete columns, confinement effect can be enhanced to maximize seismic strength and ductility.

A Study on the Safety of Lifting Cable for Construction of Coastal Structures (항만건설을 위한 케이슨 들고리의 안전성에 관한 연구)

  • Kwak, Kae Hwan;Jang, Ki Woong;Kim, Jong Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.85-99
    • /
    • 1998
  • This paper describes an experimental study to examine collapse causes of the lifting cable due to brittle failure of an fitting anchor under the lifting works. Also, in this study an collapse mechanism that was obtained from stress analysis was compared with an actual collapse procedure. Fractographical analysis as well as chemical component test, tension test and Charpy V-Notch impact test for the fractured steel members were carried out. And then, its results were compared with that of normal steel members. Circumferential surface flaws were developed at internal facets of the fitting anchor before tensile stress occurred. Hence, a higher stress than nominal stress was occurred at flaws by stress concentration at the crack tip. Also, stress intensity factor of members increased by crack size of the potential flaws. Because the stress intensity factor at the crack tip was greater than critical values(fracture toughness), brittle fracture occurred under the lifting works. It is judged that the main collapse of the lifting cable is due to brittle fracture of the fitting anchor.

  • PDF

Ultrasonic Cavitation Behavior and its Degradation Mechanism of Epoxy Coatings in 3.5 % NaCl at 15 ℃

  • Jang, I.J.;Jeon, J.M.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.26-36
    • /
    • 2021
  • Pipes operating in the seawater environment faces cavitation degradation and corrosion of the metallic component, as well as a negative synergistic effect. Cavitation degradation shows the mechanism by which materials deteriorate by causing rapid change of pressure or high-frequency vibration in the solution, and introducing the formation and explosion of bubbles. In order to rate the cavitation resistance of materials, constant conditions have been used. However, while a dynamic cavitation condition can be generated in a real system, there has been little reported on the effect of ultrasonic amplitude on the cavitation resistance and mechanism of composites. In this work, 3 kinds of epoxy coatings were used, and the cavitation resistance of the epoxy coatings was evaluated in 3.5% NaCl at 15 ℃ using an indirect ultrasonic cavitation method. Eleven kinds of mechanical properties were obtained, namely compressive strength, flexural strength and modulus, tensile strength and elongation, Shore D hardness, water absorptivity, impact test, wear test for coating only and pull-off strength for epoxy coating/carbon steel or epoxy coating/rubber/carbon steel. The cavitation erosion mechanism of epoxy coatings was discussed on the basis of the mechanical properties and the effect of ultrasonic amplitude on the degradation of coatings.