• Title/Summary/Keyword: Impact Ionization

Search Result 120, Processing Time 0.035 seconds

Analysis of Impact ionization Model for Nano structure Silicon device (나노구조 실리콘 소자의 임팩트이온화 모델 분석)

  • 고석웅;임규성;정학기
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.656-659
    • /
    • 2001
  • Recently, as device techniques are advancing and its size become smaller, the hot carriers transport analysis has more important. Impact ionization(I.I.) effect is electron-hole pair generation process by the dispersion of hot carrier in the contrast with Auger process. Complete I.I. model is essential to simulate and analysis the device transport characteristics. In the study, we will try to analysis I.I. models using Monte Carlo simulator, TCAD and Micro-Tec and present more accurate I.I. model.

  • PDF

A Novel Trench Electrode BRT with Intrinsic Region for High Blocking Voltage (고내압 특성을 위한 진성영역과 트렌치 구조를 갖는 베이스 저항 사이리스터)

  • 강이구;성만영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.243-246
    • /
    • 2001
  • In this paper, we have proposed a novel trench electrode Base Resistance Thyristor(BRT) and trench electrode BRT with a intrinsic region. A new power BRTs have shown superior electrical characteristics including snab-back effect and forward blocking voltage more than the conventional BRT. Especially, the trench electrode BRT with intrinsic region has obtained high blocking voltage of 1600V. The blocking voltage of conventional BRT is about 400V at the same size. Because the breakdown mechanism of BRT is avalanch breakdown by impact ionization, the trench electrode BRT with intrinsic region has suppressed impact ionization, effectively. If we use this principle, we can develope super high voltage power devices and applicate to another power devices including IGBT, EST and etc.

  • PDF

Modeling the Silicon Carbide Schottky Rectifiers (Silicon Carbide 쇼트기 정류기의 모델링)

  • Lee, Yu-Sang;Choe, Yeon-Ik;Han, Min-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.78-81
    • /
    • 2000
  • The closed-form analytic solutions for the breakdown voltage of 6H-SiC RTD(silicon carbide reachthrough diode) having metal$-n^--n^+$ Schottky structure or $p^+-n^--n^+$, are successfully derived by solving impact ionization integral using an effective ionization coefficient. For the lightly doped n- epitaxial layer, the breakdown voltage of SiC RTD are nearly constant with the increased doping concentration while the breakdown voltages decrease for the heavily doped epitaxial layer.

  • PDF

A Study on the Reduction of Current Kink Effect in NMOSFET SOI Device (NMOSFET SOI 소자의 Current Kink Effect 감소에 관한 연구)

  • Han, Myoung-Seok;Lee, Chung-Keun;Hong, Shin-Nam
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.2
    • /
    • pp.6-12
    • /
    • 1998
  • Thin film SOI(Silicon-on-insulator) device offer unique advantages such as reduction in short channel effects, improvement of subthreshold slope, higher mobility, latch-up free nature, and so on. But these devices exhibit floating-body effet such as current kink which inhibits the proper device operation. In this paper, the SOI NMOSFET with a T-type gate structure is proposed to solve the above problem. To simulate the proposed device with TSUPREM-4, the part of gate oxide was considered to be 30nm thicker than the normal gate oxide. The I-V characteristics were simulated with 2D MEDICI. Since part of gate oxide has different oxide thickness, the gate electric field strength is not same throughout the gate and hence the impact ionization current is reduced. The current kink effect will be reduced as the impact ionization current drop. The reduction of current kink effect for the proposed device structure were shown using MEDICI by the simulation of impact ionization current, I-V characteristics, and hole current distribution.

  • PDF

Hydrogen-Related Gate Oxide Degradation Investigated by High-Pressure Deuterium Annealing (고압 중수소 열처리 효과에 의해 조사된 수소 결합 관련 박막 게이트 산화막의 열화)

  • 이재성
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.7-13
    • /
    • 2004
  • Experimental results are presented for the degradation of 3 nm-thick gate oxide under -2.5V $\leq$ V$_{g}$ $\leq$-4.0V stress and 10$0^{\circ}C$ conditions using P and NMOSFETs that are annealed with hydrogen or deuterium gas at high-pressure (5 atm). The degradation mechanisms are highly dependent on stress conditions. For low gate voltage, hole-trapping is found to dominate the reliability of gate oxide both in P and NMOSFETs. With increasing gate voltage to V$_{g}$ =-4.0V, the degradation becomes dominated by electron-trapping in NMOSFETs, however, the generation rate of "hot" hole was very low, because most of tunneling electrons experienced the phonon scattering before impact ionization at the Si interface. Statistical parameter variations as well as the gate leakage current depend on and are improved by high-pressure deuterium annealing, compared to corresponding hydrogen annealing. We therefore suggest that deuterium is effective in suppressing the generation of traps within the gate oxide. Our results therefore prove that hydrogen related processes are at the origin of the investigated oxide degradation.gradation.

Influence of the density of states and overlap integral on impact ionization rate for silicon (상태밀도와 overlap integral이 실리콘내 전자의 임팩트이온화율에 미치는 영향)

  • 정학기;유창관;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.394-397
    • /
    • 1999
  • Impact ionization, which is a kind of a carrier-carrier interaction process occurring in a semiconductor under the influence of a high electric field, is necessary to analyse carrier transport properties. Since the parabolic or nonparabolic E-k relation is different from real band structure in high energy range, exact model of impart ionization have been presented using full band I-k relation and Fermi's golden rule. We have investigated relation of density of states, energy band structure and overlap integral. We make use of empirical pseudopotential method in order to calculate energy band structure of silicon, tetrahedron method in order to calculate density of states. We know density of states very depends on energy band structure and overlap integral depends on the primary electron energy.

  • PDF

Numerical Modeling of Very High Frequency Multi Hollow Cathode PECVD (Very High Frequency Multi Hollow Cathode PECVD 장치의 수치모델링)

  • Joo, Jung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.331-340
    • /
    • 2010
  • 3D fluid based numerical modelling is done for a VHF multi hollow cathode array plasma enhanced chemical vapor deposition system. In order to understand the fundamental characteristics of it, Ar plasma is analyzed with a condition of 40 MHz, 100 Vrf and 1 Torr. For hole array of 6 mm diameter and 20 mm inter-hole distance, plasma is well confined within the hole at an electrode gap of 10 mm. The peak plasma density was $5{\times}10^{11}#/cm^3$ at the center of the hole. When the substrate was assumed at ground potential, electron temperature showed a peak at the vicinity of the grounded walls including the substrate and chamber walls. The reaction rate of metastable based two step ionization was 10 times higher than the direct electron impact ionization at this condition. For $H_2$, the spatial localization of discharge is harder to get than Ar due to various pathways of electron impact reactions other than ionization.

SPECTRAL DIAGNOSTICS OF NON-THERMAL PARTICLES IN THE SOLAR CHROMOSPHERE

  • FANG C.;XU Z.;DING M. D.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.55-61
    • /
    • 2003
  • There are at least three effects of the non-thermal particle bombardment on the solar atmosphere: (1) non-thermal ionization and excitation; (2) proton-hydrogen charge exchange; (3) impact line polarization. Due to the non-thermal ionization and excitation effects of electron bombardments in flares, H$\alpha$ line is widely broadened and shows a strong central reversal. Significant enhancements at the line wings of Ly$\alpha$ and Ly$\beta$ are also predicted. In the case of proton bombardment, less strong broadening and no large central reversal are expected. However, due to proton-hydrogen charge exchange, the enhancements at the red wings of Ly$\alpha$ and especially of Ly$\beta$ lines at the early impulsive phase of flares are significant. Electron beam can also in some cases generates visible and UV continuum emission in white-light flares. However, at the onset phase, a negative 'black' flare may appear in several seconds, due to the increase of the $H^-$ opacity. The impact polarization of atomic lines can provide complementary information on the energetic particles, the energy transport and deposit in the solar chromosphere. New results of spectropolarimetric analysis for the major flare on July 23, 2002 are also given in the paper.

Design and Analysis of 16 V N-TYPE MOSFET Transistor for the Output Resistance Improvement at Low Gate Bias (16 V 급 NMOSFET 소자의 낮은 게이트 전압 영역에서 출력저항 개선에 대한 연구)

  • Kim, Young-Mok;Lee, Han-Sin;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.104-110
    • /
    • 2008
  • In this paper we proposed a new source-drain structure for N-type MOSFET which can suppress the output resistance reduction of a device in saturation region due to soft break down leakage at high drain voltage when the gate is biased around relatively low voltage. When a device is generally used as a switch at high gate bias the current level is very important for the operation. but in electronic circuit like an amplifier we should mainly consider the output resistance for the stable voltage gain and the operation at low gate bias. Hence with T-SUPREM simulator we designed devices that operate at low gate bias and high gate bias respectively without a extra photo mask layer and ion-implantation steps. As a result the soft break down leakage due to impact ionization is reduced remarkably and the output resistance increases about 3 times in the device that operates at the low gate bias. Also it is expected that electronic circuit designers can easily design a circuit using the offered N-type MOSFET device with the better output resistance.

Atmospheric Pressure Plasma Research Activity in Korea

  • Uhm, Han S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.367-377
    • /
    • 2001
  • Plasma is generated by electrical discharge. Most plasma generation has been carried out at low-pressure gas typically less than one millionth of atmospheric pressure. Plasmas are in general generated from impact ionization of neutral gas molecules by accelerated electrons. The energy gain of electrons accelerated in an electrical field is proportional to the mean free path. Electrons gain more energy at low-pressure gas and generate plasma easily by ionization of neutrals, because the mean free path is longer. For this reason conventional plasma generation is carried out at low pressures. However, many practical applications require plasmas at high-pressure. In order to avoid the requirement for vacuum pumps, researchers in Korea start to develop plasmas in high-pressure chambers where the pressure is 1 atmosphere or greater. Material processing, environmental protection/restoration and improved energy production efficiency using plasmas are only possible for inexpensive bulk plasmas. We thus generate plasmas by new methods and plan to set foundations for new plasma technologies for $21^{st}$ / century industries. This technological research will play a central role in material processing, environmental and energy production industries.

  • PDF