• Title/Summary/Keyword: Impact Duration

Search Result 591, Processing Time 0.179 seconds

The Project Managers' Competency by Leadership Style to Succeed the IT Projects (IT프로젝트 관리자의 리더십 유형별 역량이 프로젝트 성과에 미치는 영향)

  • Kim, Wha-Young;Kang, So-Ra
    • Journal of Information Technology Services
    • /
    • v.7 no.2
    • /
    • pp.95-111
    • /
    • 2008
  • The objective of this study is to suggest the effects of the fit between project managers' competency and leadership style on the performance of IT projects. Also, this study examine that the project duration among the project's characteristics moderates the impact of the managers' competency and leadership style on the performance of IT projects. As the results of analysis, we found that the participative leadership and the supportive leadership of project manager is affected by the human and the conceptual skills, and the directive-achievement leadership is affected by the technical skills positively. The project duration moderates the impact of the fit between the participative leadership and the technical skills. and the fit between the directive-achievement leadership and the technical and the human skills positively.

Development of the Design Frame to Predict the Peak-G and Duration Time in Gas-Gun Tests (가스건 시험의 최대 감가속도와 유지시간 예측 설계 Frame 연구)

  • Hyunsoo Park;Minsup Song;Cheol Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.24-30
    • /
    • 2024
  • The gas-gun test is a experimental approach employed to validate the operational or structural stability when subjected to the impact energy encountered during launch or target collision. Predicting the outcomes of the gas-gun test has traditionally relied on empirical knowledge, due to numerous factors such as the bird assembly's shape, weight, material, and flight velocity. However, due to the nonlinearity and complex interactions between these variables, numerous tests are necessary to identify the necessary requirements, resulting in significant expense and time consumption during the process. The objective of this study is to forecast the variations in impact energy in future tests by developing a numerical model and analysis that aligns with the test outcomes, utilizing the ABAQUS Explicit. The outcome of the numerical analysis produced a framework that anticipates the peak g and the duration of the actual gas-sun test results, throughout post-processing techniques using FFT and LPF filters.

A one-dimensional model for impact forces resulting from high mass, low velocity debris

  • Paczkowski, K.;Riggs, H.R.;Naito, C.J.;Lehmann, A.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.831-847
    • /
    • 2012
  • Impact from water-borne debris during tsunami and flood events pose a potential threat to structures. Debris impact forces specified by current codes and standards are based on rigid body dynamics, leading to forces that are dependent on total debris mass. However, shipping containers and other debris are unlikely to be rigid compared to the walls, columns and other structures that they impact. The application of a simple one-dimensional model to obtain impact force magnitude and duration, based on acoustic wave propagation in a flexible projectile, is explored. The focus herein is on in-air impact. Based on small-scale experiments, the applicability of the model to predict actual impact forces is investigated. The tests show that the force and duration are reasonably well represented by the simple model, but they also show how actual impact differs from the ideal model. A more detailed three-dimensional finite element model is also developed to understand more clearly the physical phenomena involved in the experimental tests. The tests and the FE results reveal important characteristics of actual impact, knowledge of which can be used to guide larger scale experiments and detailed modeling. The one-dimensional model is extended to consider water-driven debris as well. When fluid is used to propel the 1-D model, an estimate of the 'added mass' effect is possible. In this extended model the debris impact force depends on the wave propagation in the two media, and the conditions under which the fluid increases the impact force are discussed.

Dynamic Response Analysis of Open Section Structures with Warping Restraint Conditions and Impact Load Durations

  • Chun, Dong-Joon
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.159-164
    • /
    • 2020
  • The response analysis of frame structure with open section beams considering warping conditions and short duration load have been performed. When a beam of frame structure is subjected under torsional moment, the cross section will deform a warping as well as twist. For some thin-walled sections warping will be large, and accompanying warping restraint will induce axial and shear stresses and reduce the twist of beam which stiffens the beam in torsion. Because of impact or blast loads, the wave propagation effects become increasingly important as load duration decreases. This paper presents that a warping restraint in finite element model effects the behavior of beam deformation, dynamic mode shape and response analysis. The computer modelling of frame is discussed in linear beam element model and linear thin shell element model, also presents a correlation between computer predicted and actual experimental results for static deflection, natural frequencies and mode shapes of frame. A method to estimate the number of normal modes that are important is discussed.

Analysis of Elasto-Plastic Dynamic Behaviour of Plate Subjected to Load by Low Velocity Impact (저속충격 하중을 받는 판의 탄소성 동적거동 해석)

  • Huh, Gyoung-Jae;Dokko, Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.158-164
    • /
    • 2000
  • In this study a computer program is developed for analyzing the elasto-plastic dynamic behaviors of the plate subjected to line-loading by a low-velocity impactor. The equilibrium equation associated with the Hertzian contact law is formulated to evaluate the transient dynamic behaviour of the impacted plate. Compared with an elastic analysis, the effects of material plasticity are presented. Consequently, in the case of elasto-plastic analysys, impulse decreases, displacements increase and contact time duration is longer than the elastic case for same finite element model. And the time variation of the impacting load is not significant due to the plasticity except at the beginning of impact duration, and the induced stresses of the plate are more realistic.

  • PDF

Analysis on Inundation Characteristics for Flood Impact Forecasting in Gangnam Drainage Basin (강남지역 홍수영향예보를 위한 침수특성 분석)

  • Lee, Byong-Ju
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.189-197
    • /
    • 2017
  • Progressing from weather forecasts and warnings to multi-hazard impact-based forecast and warning services represents a paradigm shift in service delivery. Urban flooding is a typical meteorological disaster. This study proposes support plan for urban flooding impact-based forecast by providing inundation risk matrix. To achieve this goal, we first configured storm sewer management model (SWMM) to analyze 1D pipe networks and then grid based inundation analysis model (GIAM) to analyze 2D inundation depth over the Gangnam drainage area with $7.4km^2$. The accuracy of the simulated inundation results for heavy rainfall in 2010 and 2011 are 0.61 and 0.57 in POD index, respectively. 20 inundation scenarios responding on rainfall scenarios with 10~200 mm interval are produced for 60 and 120 minutes of rainfall duration. When the inundation damage thresholds are defined as pre-occurrence stage, occurrence stage to $0.01km^2$, 0.01 to $0.1km^2$, and $0.1km^2$ or more in area with a depth of 0.5 m or more, rainfall thresholds responding on each inundation damage threshold results in: 0 to 20 mm, 20 to 50 mm, 50 to 80 mm, and 80 mm or more in the rainfall duration 60 minutes and 0 to 30 mm, 30 to 70 mm, 70 to 110 mm, and 110 mm or more in the rainfall duration 120 minutes. Rainfall thresholds as a trigger of urban inundation damage can be used to form an inundation risk matrix. It is expected to be used for urban flood impact forecasting.

Effect of inwards FDI on new venture creation, industrialization and economic growth in Russia: A timeseries ARDL approach

  • Kristina, Yuryeva;He, Zhengquan
    • Asia Pacific Journal of Business Review
    • /
    • v.7 no.1
    • /
    • pp.1-21
    • /
    • 2022
  • This research aimed to clarify the impacts casted by inwards FDI on New venture creation, industrialization, and the economic growth of Russia. For all of these variables, data was taken about Russia from the site of The World Bank, and the selected duration was from 1995 to 2019. The total duration of the data taken was from 24 years. The time duration was well enough for applying the A.R.D.L. approach to the time series data of the study. This research used the unit root test to know the presence of the unit root for each variable, the lag order selection was made for the data, the bounds cointegration test was also applied, and ARDL Model was used to know about the different effects. With the help of the results derived, it was observed that the impact of private sector investment on new venture creation is significant. In contrast, foreign direct investment and research and development (R&D) effects on new venture creation are insignificant. It was also observed from the results that the impact of R&D on industrialization in Russia is significant, while the effects of FDI and the impact of private sector investment on industrialization in Russia is insignificant. We have fund that the effect of FDI and the impact of private sector investment on the economic growth of Russia is significant. In contrast, the impact of R&D is insignificant to the economic growth of Russia. The study is of great significance as it has raised the importance of R&D for industrialization, FDI, and PSI for economic growth and new venture creation for developing countries.

Yield enhancement of matrix precursor in short carbon fiber reinforced randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar;Sharma, Sharad Chandra;Verma, Anil
    • Carbon letters
    • /
    • v.19
    • /
    • pp.57-65
    • /
    • 2016
  • Isroaniso matrix precursor synthesized from commercially available petroleum pitch was stabilized in air. The influence of oxygen mass gain during stabilization on the yield of matrix precursor was studied. Additionally, the influence of pressure on the yield of the stabilized matrix precursor in a real system was studied. The fourier transform infrared spectrometry (FTIR), thermogravimetric analysis (TGA), yield, yield rate, and yield impact were used to check the effect of stabilization and pressure on the yield of the matrix precursor and the end properties of the composite thereafter. The results showed that the yield increased with stabilization duration up to 20 h whereas it decreased for stabilization duration beyond 20 h. Further results showed that the stabilized matrix precursor for a duration of 5 h could withstand almost two-fold greater hot-pressing pressure without resulting in exudation as compared to that of a 1 h stabilized matrix precursor. The enhanced hot-pressing pressure significantly improved the yield of the matrix precursor. As a consequence, the densification and mechanical properties were increased significantly. Further, the matrix precursor stabilized for a duration of 20 h or more failed to provide proper and uniform binding of the reinforcement.

Study on the Critical Storm Duration Decision of the Rivers Basin (중소하천유역의 임계지속시간 결정에 관한 연구)

  • Ahn, Seung-Seop;Lee, Hyeo-Jung;Jung, Do-June
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1301-1312
    • /
    • 2007
  • The objective of this study is to propose a critical storm duration forecasting model on storm runoff in small river basin. The critical storm duration data of 582 sub-basin which introduced disaster impact assessment report on the National Emergency Management Agency during the period from 2004 to 2007 were collected, analyzed and studied. The stepwise multiple regression method are used to establish critical storm duration forecasting models(Linear and exponential type). The results of multiple regression analysis discriminated the linear type more than exponential type. The results of multiple linear regression analysis between the critical storm duration and 5 basin characteristics parameters such as basin area, main stream length, average slope of main stream, shape factor and CN showed more than 0.75 of correlation in terms of the multi correlation coefficient.