• Title/Summary/Keyword: Impact Characteristics

Search Result 6,051, Processing Time 0.032 seconds

Investigation into Low Velocity Impact Characteristics of the Stainless Steel Sheet with Thickness of 0.7 mm on the Stretching Condition using Three-Dimensional Finite Element Analysis (3 차원 유한요소해석을 이용한 스트레칭 조건에서의 두께 0.7mm 스테인레스 강판의 저속 충격 특성 분석)

  • Ahn, Dong-Gyu;Moon, Kyung-Je;Jung, Chang-Gyun;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.80-87
    • /
    • 2008
  • This paper investigated into the impact characteristics of the stainless sheet with thickness of 0.7 mm on the stretching boundary condition through three-dimensional finite element analysis. High speed tensile tests were carried out to obtain strain-stress relationships with the effects of the strain rate. The FE analysis was performed by the ABAQUS explicit code. In order to improve an accuracy of the FE analysis, the hyper-elastic model and the damping factor were introduced. Through the comparison of the results of the FE analyses and those of the impact tests, a proper FE model was obtained. The results of the FE analyses showed that the absorption rate of energy maintains almost 82.5-83.5% irrespective of the impact energy level and the diameter of the impact head. From the results of FE analyses, variations of stress, strain, dissipation energy, strain energy density, and local deformation characteristics in the stainless sheet during the collision and the rebound of the impact head were quantitatively examined. In addition, it was shown that the fracture of the specimen occurs when the plastic strain is 0.42 and the maximum value of the plastic dissipation energy of the specimen is nearly 1.83 J.

Impact Characteristics of Multi-Density Insoles for DM Shoes (당뇨화 다밀도 안창의 충격특성)

  • 금영광;정임숙;강성재;김영길;김명웅;김영호
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.31-36
    • /
    • 2003
  • Impact characteristics of six DM(Diabetes Mellitus) shoe insole materials (Podian, Plastazote black, Plastazote white, Flexible PU foam, Podialene 200 blue and Podia flex) and three multi-density insoles (AP, OS and PW insoles) were determined in the present study, using a self-designed impact measurement system. The coefficient of restitution, the median frequency and the attenuation index were calculated for each material, based on impact forces and linear accelerations. Podian revealed the superiority in the coefficient of restitution and the attenuation index. The median frequency of the Flexible PU foam was the smallest. Results also showed that the heel region was the most impact-attenuated among other areas in the insole. OS insole showed the better characteristics in the coefficient of restitution and the median frequency. but there was no significant difference in the attenuation index. Similar impact characteristics were found in all areas in PW insole. since it was basically of the same dual-density polyurethane.

Consideration on Rating Method for Heavy Impact Sound Taking Account of the Characteristics of Floor Vibration and Impact Sources (바닥 진동 거동 및 충격원 특성을 고려한 바닥 중량 충격음 평가방법 고찰)

  • Lee, Min-Jung;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.69-79
    • /
    • 2017
  • The purpose of this study is to reconsider the rating method for the floor impact sound insulation performance in current criterion. Although there are some arguments about proper standard heavy impact source with reproducibility of actual impact source in residence building, bang machine is adopted as the only standard heavy impact source in domestic criterion. To inspect the rating methods of evaluation criteria, this study conducted vibration test for both of standard heavy impact sources and actual impact sources. Using the test results, the floor impact sound insulation performance levels were assessed by each of several criteria. In addition, low frequency noise beyond current criteria was evaluated. Consequently, the floor impact sound levels have different performance levels according to adopted criteria, and measured floor impact sounds are bound to annoy the neighbors in the low frequency range. Current criteria does not consider the spectrum characteristics of floor impact sound according to impact sources and low frequency noise. This may cause the difference between the floor impact sound insulation performance level and human perception. Thus current criterion needs to be complemented to reflect the spectrum characteristics of floor impact sound levels according to impact sources and sound pressure levels in low frequency range.

The Reduction of Floor Impact Noise and Impact Force Level of PVC Vinyl Floor coverings and Mats for Children (PVC 바닥 마감재와 아이들 매트의 바닥 충격음 및 충격력 저감)

  • Mun, Dae-Ho;Park, Hong-Gun;Song, Guk-Gon;Lee, Cheol-Seung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.425-430
    • /
    • 2014
  • Floor coverings and Mats are for children are economical and has excellent workability, as well as they can reduce floor impact noise effective. "When these floorings contact to impact source, they are deformed and change impact force characteristics that strikes floor structure. It is important to measure the impact force spectrum of floorings in order to evaluate reduction of floor impact noise for floorings. In experimental test of floor impact noise and impact force for 14 PVC vinyl floor coverings and 16 mats for children, we confirmed that the impact force spectrum directly related to the floor impact noise spectrum.

  • PDF

Characteristics of Transmission of Floor Vibration and Floor Impact Noise Due to Human Activities (거주자의 거동으로 발생하는 바닥진동의 층간 전달 및 바닥충격음의 음압레벨 특성 평가)

  • Lee, MinJung;Choi, HyunKi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.5-13
    • /
    • 2017
  • Noise complaints among neighbors in apartment building are mainly caused by floor impact noise that is structure born noise due to occupant induced floor vibration. To control this noise problems many researchers have investigated floor systems and finishing materials. Light-weight impact noise affects by finishing materials, but heavy-weight impact noise induced by heel impacts during normal walking or jumping of children is concerned with structural system and floor vibration. To figure out the characteristics of floor impact noise and transmission of floor vibration due to human activities, vibration tests were conducted in apartment buildings. Impact hammer, heel drop and walking activities were loaded at center of upstairs living room, and accelerations of slabs for both upstairs and downstairs and sound pressure levels for downstairs were measured. The acceleration ratio of transmitted floor vibration to downstairs and human induced vibration in upstairs was between 0.5 and 1.0 according to slab size, wall, and load type. And floor impact noise occurred in the range of natural frequency of slab.

Stundy on Simulation Characteristics of Low Velocity Impact Test of Carbon/Epoxy Composite Plates Manufactured by Filament Winding Method (필라멘트 와인딩 공법으로 제작한 탄소섬유/에폭시 복합소재 평판의 저속 낙하 충격시험 시뮬레이션에 관한 연구)

  • BYUN, JONGIK;KIM, JONGLYUL;HEO, SEOKBONG;KIM, HANSANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.190-196
    • /
    • 2018
  • Carbon fiber/epoxy composites are typical brittle materials and have low impact properties. Recently, it is important to investigate impact characteristics of carbon fiber composites because of increasing use as automobile parts and high pressure hydrogen vessels of fuel cell electric vehicles for light weight. In this study, the low velocity impact properties of carbon fiber/epoxy composites fabricated by a filament winding method are studied. The low velocity impact properties were measured by performing tests according to ASTM D7136. The low velocity impact simulations were carried out using commercial structural analysis software, Abaqus. The absorbed energy and the delamination shapes were compared between the experimental and simulation results. The numerical analysis method showed that the absorbed energy decreased with the reduced number of cohesive elements in the composite models.

Dynamic Characteristic Analysis of MR Impact Damper for Vehicle System (차량용 MR충격댐퍼의 동특성 해석)

  • Song, Hyun-Jeong;Woo, Da-Vid;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.754-761
    • /
    • 2006
  • This paper presents the dynamic characteristics of MR impact damper for vehicle collision system. Various types of mechanism have been proposed to reduce force transmitted to the vehicle chassis and finally to protect occupants from injury. In the case of head-on collision, the bumper makes main role of isolation material for collision attenuation. In this study, the proposed bumper system consists of MR impact damper and structures. The MR impact damper utilizes MR fluid which has reversible properties with applied magnetic field. The MR fluid operates under flow mode. The bellows is used for generation of fluid flow. A mathematical model of the MR impact damper is derived incorporating with Bingham model of the MR fluid. Field dependent damping force is investigated with time and frequency domain. The MR impact damper is then incorporated with vehicle crash system. The governing equation of motion of vehicle model is formulated considering occupant model. Dynamic characteristics of vehicle collision system investigated with computer simulation.

A Study on the Characteristics of the Tube-to-Support Dynamic Impact Force Measurement Facility (튜브와 지지대 사이의 동적상호 충격력 측정장치 특성규명에 관한 연구)

  • 김일곤;박진무
    • Journal of KSNVE
    • /
    • v.5 no.1
    • /
    • pp.95-106
    • /
    • 1995
  • Flow-induced vibration in heat exchanger (or fuel rod) in nuclar power plant can cause dynamic interactions between tubes and tube supports resulting in fretting-wear. To increase the reliability and design life of heat exchanger components, design criteria that establish acceptable limits of vibration and minimize fretting wear are necessary. The fretting-wear rate is dependent upon material combination, contact configuration, environmental conditions and tube-to tube support dynamic interaction. It is demostrated that the fretting -wear rate correlates well with tube-to-support contact force or work rate. The tube-to-support dynamic interaction, which consists of dynamic contact forces and tube motion, is used to relate single-span wear data to real heat exchanger configurations consisting of multi-span tube bundles. This paper describes the test facility to measure tube-to-support dynamic impact force and reports its dynamic characteristics through the four impact tests - a force transduces independent and external impact tests, central ring inside impact test and additional cylinder impact test. Through the tests the impact parameter change dependent upon the material difference of impacting ball is studied, and the impact parameters of Force Transducer Assembly components are measured. And also the dynamic behavior of Force Transducer Assembly is analyzed. The force measurement technique herein is shown to provide a reasonable measure of dynamic contact forces.

  • PDF

Dynamic Characteristic Analysis of MR Impact Damper for Vehicle System (차량용 MR 충격댐퍼의 동특성 해석)

  • Song, Hyun-Jeong;Woo, David;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.147-152
    • /
    • 2006
  • This paper presents the dynamic characteristics of MR impact damper for vehicle collision system. Various types of mechanism have been proposed for reduce transmitted force to vehicle chassis and finally protect occupants from injury. In the case of frontal collision, the bumper make main role of isolation material for collision attenuation. In this study, proposed bumper system composed of MR impact damper and structures. The MR impact damper is to adopted MR fluid which has reversible properties with applied magnetic field. MR fluid operates under flow mode with Bingham flow and bellows is used for generation of fluid flow. Mathematical model of MR impact damper incorporated with MR fluid is established. Field dependent damping force is investigated with time and frequency domain. The MR impact damper is then incorporated with vehicle crash system. The governing equation of motion of vehicle model is formulated considering occupant model. Dynamic characteristics of vehicle collision system investigated with computer simulation.

  • PDF

Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load

  • Baaskaran, N.;Ponappa, K.;Shankar, S.
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.179-194
    • /
    • 2018
  • Reliable and accurate method of computationally aided design processes of advanced thin walled structures in automotive industries are much essential for the efficient usage of smart materials, that possess higher energy absorption in dynamic compression loading. In this paper, most versatile components i.e., thin walled crash tubes with different geometrical profiles are introduced in view of mitigating the impact of varying cross section in crash behavior and energy absorption characteristics. Apart from the geometrical parameters such as length, diameter and thickness, the non-dimensionalized parameters of average forces which control the plastic bending moment for varying thickness has explored in view of quantifying its impact on the crashworthiness of the structure. The explicit finite element code ABAQUS is utilized to conduct the numerical studies to examine the effect of parametric modifications in crash behavior and energy absorption. Also the simulation results are experimentally validated. It is evident that the circular cross-sectional tubes are preferable as high collision impact shock absorbers due to their ability in withstanding axial and oblique impact loads effectively. Furthermore, the specific energy absorption (SEA), crash force efficiency (CFE), plastic bending moment, peak force responses and its impact for optimally tailoring a design to cater the crashworthiness requirements are investigated. The primary outcome of the study is to provide sufficient information on circular tubes for the use of energy absorbers where impact oblique loading is expected.