• 제목/요약/키워드: Impact Ball

검색결과 325건 처리시간 0.024초

고속 변형률 속도에서의 무연 솔더 볼 연결부의 강도 평가 (Evaluation of the Joint Strength of Lead-free Solder Ball Joints at High Strain Rates)

  • 주세민;김택영;임웅;김호경
    • 한국안전학회지
    • /
    • 제27권6호
    • /
    • pp.7-13
    • /
    • 2012
  • A lack of study on the dynamic tensile strengths of Sn-based solder joints at high strain rates was the motivation for the present study. A modified miniature Charpy impact testing machine instrumented with an impact sensor was built to quantitatively evaluate the dynamic impact strength of a solder joint under tensile impact loading. This study evaluated the tensile strength of lead-free solder ball joints at strain rates from $1.8{\times}10^3s^{-1}$ and $8.5{\times}10^3s^{-1}$. The maximum tensile strength of the solder ball joint decreases as the load speed increases in the testing range. This tensile strength represented that of the interface because of the interfacial fracture site. The tensile strengths of solder joints between Sn-3.0Ag-0.5Cu and copper substrate were between 21.7 MPa and 8.6 MPa in the high strain range.

플립칩의 설계변수 변화에 따른 보드레벨 플립칩에서의 낙하충격 수명예측 (Prediction of the Impact Lifetime for Board-Leveled Flip Chips by Changing the Design Parameters of the Solder Balls)

  • 이수진;김성걸
    • 한국생산제조학회지
    • /
    • 제24권1호
    • /
    • pp.117-123
    • /
    • 2015
  • The need for drop simulations for board-leveled flip chips in micro-system packaging has been increasing. There have been many studies on flip chips with various solder ball compositions. However, studies on flip chips with Sn-1.0Ag-0.5Cu and Sn-3.0Ag-0.5Cu have rarely been attempted because of the unknown material properties. According to recent studies, drop simulations with these solder ball compositions have proven feasible. In this study, predictions of the impact lifetime by drop simulations are performed considering Cu and Cu/Ni UBMs using LS-DYNA to alter the design parameters of the flip chips, such as thickness of the flip chip and size of the solder ball. It was found that a smaller chip thickness, larger solder ball diameter, and using the Cu/Ni UBM can improve the drop lifetime of solder balls.

골프 스윙에서 $\Delta$-평면과 스핀 ($\Delta$-plan and spin in the golf swing)

  • 조창호;박종대;이근춘
    • 자연과학논문집
    • /
    • 제14권2호
    • /
    • pp.1-14
    • /
    • 2004
  • 본 연구는 스윙 변수의 관찰과 스윙에 미치는 원인을 종합적으로 분석한다. 골프공은 임팩트 후에는 제어가 되지 않는다. 공은 혼자 날아가 버린다. 그러므로 임팩트 전에 제어를 해야 된다. 이 논문에서 연구의 주제는 훅과 슬라이스의 원인을 찾아보고 해결의 방법을 모색하려고 한다. $\Delta$-평면은 임팩트후의 초기속도와 스핀축의 직각 방향인 양력의 방향을 포함하는 평면으로 스윙 속도 방향벡터와 클럽면의 직각방향으로 이루어진 평면이다. 골프 스윙에 있어서 미스샷의 교정에 $\Delta$-평면을 이용하기 위하여 이론적인 고찰과 기존의 이론과의 비교 연구하여 골퍼의 스윙을 지도하여 경기력을 향상하는데 본 연구의 목적이다.

  • PDF

직물형 유리섬유/에폭시 프리프레그로 피막된 판유리의 강구 충격 파괴 거동 (Steel-Ball-Impact fracture Behavior of Soda-Lime Glass Plates Bonded with Glass Fabric/Epoxy Prepreg)

  • 김형구;최낙삼
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.20-25
    • /
    • 2000
  • In order to study the impact fracture behavior of brittle materials, a steel-ball-impact experiment was Performed. Five kinds of materials were used in this study : soda-lime glass plates, glass/epoxy prepreg-one layer-bonded and unbonded glass plates, glass/epoxy prepreg-three layers-bonded and unbonded glass plates. Fracture patterns, the maximum stress and absorbed fracture energy were observed according to various impact velocities 40-120m/s. With increasing impact velocity, ring crack, cone crack, radial crack and lateral crack took place in the interior of glass plates. The generation of such cracks was largely reduced with glass/epoxy prepreg coating. Consequently, it is thought that the characteristics of the dynamic Impact fracture behavior could be evaluated using the absorbed fracture energy and the maximum stress measured at the back surface of glass plates.

  • PDF

고온하에서 횡충격을 받는 CF/PEEK 적층재의 충격손상과 잔류강도 (The Impact Damage and the Residual Strength of CF/PEEK Laminate Subjected to Transverse Impact under the High Temperature)

  • 양인영;정종안
    • 한국자동차공학회논문집
    • /
    • 제2권6호
    • /
    • pp.66-75
    • /
    • 1994
  • In this paper, the effects of temperature change on the impact damages of CF/PEEK laminates are experimentally investigated. Composite laminates used in this experiment are CF/PEEK orthotropic laminated plates, which have two-interfaces$[0^{\circ}_4/90^{\circ}_4]_{9+} A steel ball launched by the air gun collides against CFRP laminates to generate impact damage. The delamination damages are oberved by a scanning acoustic microscope. And various relations are experimentally observed including the impact energy vs. delamination area, the specimen temperature vs. transverse crack, and the impact energy vs. residual bending strength of carbon fiber peek composite laminates subjected to FOD(Foreign Object Damage) under high temperatures.

  • PDF

금속파편충격에 의한 강판의 가속도신호 특성 (Acceleration Signal Characteristics of Steel Plate Impacted by Metallic Loose Parts)

  • 성게용;윤용구
    • 비파괴검사학회지
    • /
    • 제12권2호
    • /
    • pp.21-29
    • /
    • 1992
  • Acceleration signal characteristics of a steel plate, impacted by steel balls, were studied in an attempt to apply the experimental results to the impact location and mass estimation of metallic loose parts in the cooling system of nuclear power plants. Experimental results show that the variation of maximum acceleration amplitude and impact contact time due to the change of ball mass and impact velocity can be well explained by the Hertz impact theory. The frequency spectral pattern shifted slightly in spite of the increase of impact velocity and impact location. Ball mass, however, strongly affected the frequency spectral pattern. Hence the frequency spectrum can be used for estimation of the mass of unknown loose parts in the cooling system.

  • PDF

배구 스파이크시 신체분절의 각도와 각속도에 대한 운동학적 분석 (Kinematical Analysis of Angle and Angular Velocity of the Body Segment on Spike in Volleyball)

  • 조필환
    • 한국운동역학회지
    • /
    • 제17권1호
    • /
    • pp.191-199
    • /
    • 2007
  • This study was conducted to examine the biomechanical characteristics of open spike in the volleyball to improve the technique of the volleyball spike. The subjects were six male college and high school athletes. The motions of volleyball spike were filmed by using two Sony VX 2000 Video Cameras. The mechanical factors were angle and angular velocity of body segments in the upper and the lower limbs. The conclusions were as follows; 1. The angle of the shoulder joint of the skilled showed larger than that of the unskilled in impacting of the volley ball spike. 2. The angle of the elbow joint of the skilled showed larger than that of the unskilled in impacting of the volley ball spike. 3. The angle of the wrist joint of the skilled showed smaller than that of the unskilled in impacting of the volley ball spike. 4. The angle of the hip joint of skilled showed larger than that of unskilled in impacting of the volley ball spike. 5. The angle of the knee joint of the skilled and the unskilled showed same in take off and impacting of the volley ball spike, and that of the skilled showed smaller than that of the unskilled in take-off touchdown and touchdown after impact of the volley ball spike. 6. The angle of the ankle joint of skilled showed larger than unskilled in take-off of the volley ball spike. 7. The angular velocity of the shoulder joint, elbow joint, wrist joint of the skilled showed faster than that of the unskilled in impacting of the volley ball spike. Taken together the result of them, I have come to conclusion that knee joint angle in touchdown of the take off should be decreased and knee joint angle in take off should be increased, and then stability of the take off should be made and, and that extension of the elbow joint should be made and wrist joint angle decreased and shoulder and hip joint angle increased, and then C.O.G of the arm and hand should be positioned ahead C.O.G of the body in impacting for effective impact of the spike, and that the transfer of the angular velocity of body segments for effective impact of the spike make from the proximal segment to the distal segment at spike in volleyball.

스티어링 컬럼의 충격 흡수 거동에 관한 연구 (The Study on the Impact Absorbing Behaviour of Steering Column)

  • 허신;구정서;최진민
    • 연구논문집
    • /
    • 통권25호
    • /
    • pp.23-29
    • /
    • 1995
  • Steering column is a typical component that may injure the driver at a frontal collision accident. To protect the driver from an impact, it is very important to study the impact absorbing behaviour of steering column. The dynamic simulation were performed for the ball sleeve type impact absorbing steering column. The simulation results show similar trends to FMVSS 203 test results. Hence using the simulation program developed in this study, it is possible to predict dynamic response of steering system which is used in design modification. Impact absorbing performance of the ball sleeve type steering column with the column angle of $21^\circC$ and $26^\circC$ satisfies the safety criterion of FMVSS 203.

  • PDF

표준바닥충격원의 ACF/IACF 및 Zwicker 파라메타 분석 (ACF/IACF and Zwicker Parameters Analysis on Floor Impact Noise)

  • 전진용;정정호;;조문재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.945-950
    • /
    • 2001
  • Floor impact noise has been evaluated by investigating the temporal and spectral characteristics of the noise. The noises generated by different impactors were analyzed to find out whether there is any correlation with the factors of ACF /IACF (Autocorrelation Function/Inter-aural Cross-correlation Function) [1] and Zwicker parameters [2]. Experiments were undertaken to compare the objective and subjective parameters of the floor impact noises generated by a bang/tapping machine, a rubber ball [3], and a walker. As a result, it was found that $\phi$ (0) and IACC extracted from ACF/IACF, and Loudness, Unbiased Annoyance from Zwicker parameters showed high correlation with subjective evaluations of loudness concerning floor impact noises. In addition, it was revealed that jumping is similar to the ball.

  • PDF

플립칩의 매개변수 변화에 따른 보드레벨의 동적신뢰성평가 (Dynamic Reliability of Board Level by Changing the Design Parameters of Flip Chips)

  • 김성걸;임은모
    • 한국생산제조학회지
    • /
    • 제20권5호
    • /
    • pp.559-563
    • /
    • 2011
  • Drop impact reliability assessment of solder joints on the flip chip is one of the critical issues for micro system packaging. Our previous researches have been showing that new solder ball compositions of Sn-3.0Ag-0.5Cu has better mechanical reliability than Sn-1.0Ag-0.5Cu. In this paper, dynamic reliability analysis using Finite Element Analysis (FEA) is carried out to assess the factors affecting flip chip in drop simulation. The design parameters are size and thickness of chip, and size, pitch and array of solder ball with composition of Sn1.0Ag0.5Cu. The board systems by JEDEC standard including 15 chips, solder balls and PCB are modeled with various design parameter combinations, and through these simulations, maximum yield stress and strain at each chip are shown at the solder balls. It is found that larger chip size, smaller chip array, smaller ball diameter, larger pitch, and larger chip thickness have bad effect on maximum yield stress and strain at solder ball of each chip.