• Title/Summary/Keyword: Immune-modulatory

Search Result 97, Processing Time 0.024 seconds

Effect of CST on atopic dermatitis related inflammatory cytokines (청기소독탕(淸肌消毒湯)이 아토피피부염 염증 관련 인자에 미치는 영향)

  • Kim, Hye-Rim;Gim, Seon-Bin;Yun, Mi-Young;Lee, Ki-Moo;Kim, Dong-Hee
    • Journal of Haehwa Medicine
    • /
    • v.20 no.2
    • /
    • pp.41-52
    • /
    • 2012
  • In vitro tests were performed using CST to investigate its role on oxidative damages and inflammatory cytokines. 90% or higher cell viability was observed in CST treated groups from 25 to 200 ${\mu}g/m{\ell}$ using Raw 264.7 cells. CST showed dose-dependent DPPH scavenging activity, with 91.3% and 92.2% scavenging activities at 400 and 800 ${\mu}g/m{\ell}$ concentrations, respectively. CST showed dose-dependent suppression activity of ROS production, especially at 200 ${\mu}g/m{\ell}$ of 41.3%. CST decreased NO production activity, with significant decrease of 16.2% and 33.5% at 100 and 200 ${\mu}g/m{\ell}$ concentrations, respectively. IL-$1{\beta}$, IL-6, MCP-1 production rate were significantly decreased by 30.0%, 27.2%, 22.1% when Raw 264.7 cells were treated with LPS and with CST of 200 ${\mu}g/m{\ell}$. Also, TNF-${\alpha}$ production rate was decreased by 28.6%. The results above indicated therapeutic effect of CST on the AD through anti-oxidative and immune modulatory effect. Various blending of drug substances with CST should be clinically tested.

Withaferin A Inhibits PMA-Induced MMP-9 Expression in Human Cervical Carcinoma Caski Cells (인간 자궁경부암세포인 Caski세포에서 withaferin A에 의한 PMA 매개 matrix metalloproteinase-9의 발현 억제 효과)

  • Kim, Dong Eun
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.355-360
    • /
    • 2013
  • Withaferin A is an active component of Withania somnifera, and has anti-inflammatory, anti-tumor, and immune modulatory effects. However, the effects of withaferin A on metalloproteinase (MMP)-9 expression and activity have not been investigated. In this study, we investigated the ability of withaferin A to inhibit MMP-9 expression and activity in PMA-treated human cervical carcinoma Caski cells. Withaferin A markedly inhibited the PMA-induced MMP-9 activity in a dose-dependent manner. Withaferin A decreased not only PMA-induced MMP-9 promoter activity but also PMA-mediated MMP-9 mRNA and protein expression in Caski cells. NF-${\kappa}B$ promoter activity, which is important in MMP-9 expression, was also decreased in combined treatment with withaferin A and PMA. Furthermore, withaferin A markedly suppressed the ability of PMA-mediated migration in Caski cells. Our findings suggest that withaferin A might inhibit PMA-induced migration through the down-regulation of MMP-9 expression and activity.

Modulation of Sarcodon Aspratus on lon Currents-induced by Excitatory Neurotransmitters in Rat Periaqueductal Gray Neurons

  • Kim, Sung-Tae;Sung, Yun-Hee;Kim, Chang-Ju;Joo, Kwan-Joong;Han, Seung-Ho;Lee, Choong-Yeol;Kim, Youn-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1672-1677
    • /
    • 2006
  • Sarcodon aspratus is the mushroom of Telephoracea which was been classified into Alphllophorales. The aqueous extract of Sarcodon aspratus in known to have anti-tumor activity, immune modulatory effect, and anti-oxidative action. The descending pain control system consists of three major components: the periaqueductal gray (PAG) of the midbrain, the rostroventral medulla including the nucleus raphe magnus, and the spinal dorsal horn. Glutamate is the primary excitatory neurotransmitter in the brain. Glutamate ionotropic receptors are classified as N-methyl-D-aspartate (NMDA) receptor, ${\alpha}$-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor, and kainate receptor. In the present study, the modulation of Sarcodon aspratus on the ion currents activated by glutamate, NMDA, AMPA, and kainate in the acutely dissociated PAG neurons was investigated by nystatin-perforated patch-clamp technique under boltage-clamp condition. Sarcodon aspratus increased glutamate- and NMDA-induced ion currents were not increased by Sarcodon aspratus. The present results show that Sarcodon aspratus may activate the descending pain control system in rat PAG neurons through NMDA receptor.

Evaluation of Antifungal and Antibacterial Activity of Newly Developed Licorice Varieties

  • Kang, Sa-Haeng;Song, Young-Jae;Jeon, Yong-Deok;Soh, Ju-Ryun;Park, Jung-Hyang;Lee, Jeong-Hoon;Park, Chun-Geon;Jang, Jae-Ki;Jin, Jong-Sik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.103-103
    • /
    • 2019
  • Glycyrrhizae radix, commonly known as licorice, is a perennial herb belonging to Leguminosae and also includes various components such as, glycyrrhizin, liquiritin, liquiritigenin and isoliquiritigenin etc. Licorice has been widely used in East Asia as a medicine having pharmacological effects like antioxidants, anti-bacterial, anti-inflammatory, anti-cancer and immune modulatory activities. Among various licorice, Glycyrrhiza (G.) uralensis G. glabra and G. inflata are used for pharmaceutical purposes in Korea. However, cultivation of licorice has some problems such as low quality, low productivity, and early leaf drop. Korea Rural Development Administration developed new cultivars Wongam and Sinwongam, which are improved in cultivation and quality. To register the newly developed cultivar (s) on Ministry of Food and Drug Safety in Korea as a medicine, it is necessary to prove the similarity and difference through the comparative studies between already-registered species and new cultivars. Some fungi and bacteria usually in the human oral cavity and intestines exist as harmless state in human body. Also, the skin and genital infections by fungi can lead to toxic systemic infections and are accompanied by flushing, rashes, burning or painful sensation. The influences of licorice varieties on fungi and bacteria might be an evidence to prove the outstanding effect of newly developed licorice variety. In this study, the antifungal and antibacterial activity was investigated using newly developed licorice varieties Wongam, and Sinwongam against various fungi and bacteria. These results means newly developed licorice could be used as a replacement of already-registered species in terms of antifungal and antibacterial application.

  • PDF

Comparison of Radical Scavenging and Immunomodulatory Activities Exhibited by an Aqueous Extract of Diospyros kaki Thunb. Fruit (Persimmon) (청도반시 추출물에 의한 라디칼소거 활성과 면역조절 활성의 상호 비교)

  • Heo, Jin-Chul;Chae, Jang-Heui;Lee, Sook-Hee;Lee, Yun-Rae;Moon, Kwang-Deog;Chung, Shin-Kyo;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.15 no.5
    • /
    • pp.749-753
    • /
    • 2008
  • To assess the relationship between anti-oxidant and immunomodulatory activities of Diospyros kaki Thunb. fruit, we harvested persimmons on the first Friday of every month from July to October, and conducted a DPPH assay, a T-bet promoter assay, and an ELISA for IL-4 determination. Anti-oxidant activity increased as fruit weight rose. When the fruit was extracted with five different solvents, and the extracts examined for radical scavenging activity, such activity exhibited a pattern similar to that seen when anti-oxidant activity was assessed. T-bet promoter activity decreased on ripening, whereas IL-4 expression increased, as tested in a DNFB-induced animal model. Collectively, the results suggest that inflammation-inhibitory activity, valuable in treatment of some immune diseases, rises as persimmons ripen.

Anti-Inflammatory Potential of Probiotic Strain Weissella cibaria JW15 Isolated from Kimchi through Regulation of NF-κB and MAPKs Pathways in LPS-Induced RAW 264.7 Cells

  • Yu, Hyung-Seok;Lee, Na-Kyoung;Choi, Ae-Jin;Choe, Jeong-Sook;Bae, Chun Ho;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1022-1032
    • /
    • 2019
  • Probiotics are known to provide the host with immune-modulatory effects and are therefore of remarkable interest for therapeutic and prophylactic applications against various disorders, including inflammatory diseases. Weissella cibaria JW15 (JW15) has been reported to possess probiotic and antioxidant properties. However, the effect of JW15 on inflammatory responses has not yet been reported. Therefore, the objective of the current study was to evaluate the anti-inflammatory potential of JW15 against lipopolysaccharide (LPS) stimulation. The production of pro-inflammatory factors and the cellular signaling pathways following treatment with heat-killed JW15 was examined in LPS-induced RAW 264.7 cells. Treatment with heat-killed JW15 decreased nitric oxide and prostaglandin $E_2$ production via down-regulation of the inducible nitric oxide synthase and cyclooxygenase-2. In addition, treatment with heat-killed JW15 suppressed the expression of pro-inflammatory cytokines, interleukin $(IL)-1{\beta}$, IL-6, and tumor necrosis factor-${\alpha}$. The anti-inflammatory properties of treating with heat-killed JW15 were associated with mitogen-activated protein kinase signaling pathway-mediated suppression of nuclear factor-${\kappa}B$. These results indicated that JW15 possesses anti-inflammatory potential and provide a molecular basis regarding the development of functional probiotic products.

Biological Activity of Oenothera Biennis Seed Extracts (달맞이꽃 종자 추출물의 생리활성)

  • Cho, Hyun-Dong;Kim, Du-Hyun;Kim, Min-Geun;Lee, Yong-Suk;Seo, Kwon-Il
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1048-1055
    • /
    • 2018
  • In the current study, comparisons of Oenothera Biennis seed extracts with water, ethanol, methanol, and 70% ethanol in their total polyphenolics contents, anti-oxidant, anti-neurotoxicity, anti-cancer, and immune-modulatory activities were investigated. Compared with other extracts, those concentrations of total phenolics and flavonoids were the highest in MeOH extract (31.90 mg GAE/g and 20.66 mg QE/g). The radical scavenging and reducing power activities were dose-dependently increased by treatment of O. Biennis seed water, EtOH, MeOH, and 70% EtOH extracts. Furthermore, pretreatment of water, EtOH, and MeOH extracts significantly reduced glutamate-induced cytotoxicity in HT22 hipocampal neuron cells. In the case of cancer cells, MeOH extracts showed lower $IC_{50}$ values in HepG2 ($74.21{\mu}g/ml$), A549 ($188.24{\mu}g/ml$), MCF-7 ($186.42{\mu}g/ml$), and B16 ($101.80{\mu}g/ml$) than other extracts, where those water ($101.96{\mu}g/ml$) and EtOH ($788.39{\mu}g/ml$) extracts showed the lowest $IC_{50}$ activity in HT-29 and PC-3 cells, respectively. O. Biennis seed extracts did not show any cytotoxicity in RAW 264.7 macrophages at the concentration of $1-10{\mu}g/ml$, whereas 70% EtOH extract dose-dependently enhanced nitric oxide (NO) production in RAW 264.7 cells. Overall, we evaluated that various bioactive potentials of O. Biennis seed extracts which would relate with phenolic compounds abundance, thus these can be useful to future developments as functional food ingredients and natural medicines.

IgA 항체합성에 대한 초유함유 TGF-${\beta}$ 와 bifidobacteria의 영향 평가

  • Kim, Pyeong-Hyeon;Go, Jun-Su
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2001.11a
    • /
    • pp.43-56
    • /
    • 2001
  • Colostrum contains various kinds of cytokines including TGF-${\beta}$ which is known to be multifunctional in immune response and act as an anti-inflammatory agent. First, we measured the amount of TGF-${\beta}$ in bovine and human colostrum. Expression pattern of TGF-${\beta}$ isotypes was dramatically different between human and bovine colostrial samples. Bovine colostrum collected on day 1 post-delivery retained $41.79{\pm}16.96ng/ml$ of TGF-${\beta}$ 1 and $108.4{\pm}78.65ng/ml$ of TGF-${\beta}$ 2 while in human, $284{\pm}124.75ng/ml$ of TGF-${\beta}$ 1 and $29.75{\pm}6.73ng/ml$ of TGF-${\beta}$ 2. Thus, TGF-${\beta}$ is the predominant TGF-${\beta}$ isotype in bovine colostrum and vice versa in human colostrum. Both TGF-${\beta}$ isotypes diminished significantly in human and bovine colostrum with time. Next, biological activity of colostrial samples was examined in vitro. Both human and bovine colostrum increased IgA synthesis by LPS-activated mouse spleen B cells, which is a typical effect of TGF-${\beta}$ on the mouse B cell differentiation. Futhermore, we found that anti-proliferative activity in MV1LU cells by colostrum samples disappeared by addition of anti-TGF-${\beta}$ 1 and anti-TGF-${\beta}$ 2 antibody. In conclusion, there are substantial amounts of biologically active TGF-${\beta}$ 1 and TGF-${\beta}$ 2 in bovine and human colostrum. The results that the colostrum can increase IgA expression has important implications since IgA is the major Ig class produced in the gastrointestinal tract. We have previously shown that the stimulatory effect of Bifidobacteria bifidum on spllen B cells was quite similar to that of LPS which is a well-known polyclonal activator for murine B cells. In the present study, we further asked whether B. bifidum regulate the synthesis of IgA by mucosal lymphoid cells present in Peyers patches (PP) and mesenteric lymph nodes (MLN). B. bifidum alone, but not C. perfringens, significantly induced overall IgA and IgM synthesis by both MLN and PP cells. This observation indicates that B. bifidum possesses a modulatory effect on the mucosal antibody production in vivo. We, therefore, investigated the mucosal antibody prodduction following peroral administration of B. bifidum to mice. Ingested B. bifidum significantly increased the numbers of Ig (IgM, IgG, and IgA) secreting cells in the culture of both MLN and spleen cells, indicating that peroally introduced B. bifidum enhances mucosal and systemic antibody response. Importantly, however, B. bifidum itself does not induce the own specific antibody responses, implying that B. bifidum do not incite any unwanted immune reaction. Subsequently, it was found that excapsulation of B. bifidum further augments the total IgA production by increasing the number of IgA-secreting cells in the culture of both MLN and spleen cells. Finally, we found that the immuno-stimulating activity of B. bifidum is due to its cell wall components but not due to any actively secreting component(s) from bacteria. Thus our data reveal that peroral administration of B. bifidum can enhance intestinal IgA production and that encapsulation of B. bifidum further reinforces the IgA production.

  • PDF

Improvement of Biological activities of Acer mono and Acer okamotoanum Saps by Nano-encapsulation Process (나노입자화 공정을 이용한 고로쇠 및 우산고로쇠 수액의 유용생리활성 증진)

  • Jeong, Myoung-Hoon;Ha, Ji-Hye;Oh, Sung-Ho;Kim, Seung-Seop;Jin, Ling;Lee, Hak-Ju;Kang, Ha-Young;Prak, Uk-Yeon;Lee, Hyeon-Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.4
    • /
    • pp.399-408
    • /
    • 2009
  • We investigated the improvement of immuno-modulatory activities of sap of Acer mono and A. okamotoanum encapsulated with edible polymers. Anticancer activities and immune activities such as human B and T cell growth, secretion of cytokines and natural killer cell growth were observed. Both human immune B and T cells were increased up to 30~50% by the addition of nano particle sap of Acer mono and A. okamotoanum. The secretion of Interleukin-6 (IL-6) and Tumor necrosis factor-a (TNF-a) from human immune B and T cells were also significantly increased compare to the control. Natural Killer (NK) cell growth was enhanced to $19.4{\times}10^5$ cells/mL in adding nano encapsulated sap of A.okamotoanum. The cytotoxicity of the sample on normal human lung cell (HEL299) was below 19.8% in adding 1.0 mg/mL of the nano particle sap of A. okamotoanum. Generally, the growth of all three human lung adenocarcinoma, human stomach adenocarcinoma and human liver adenocarcinama was inhibited up to 85% in adding 1.0 mg/mL of the encapsulated sap. Interestingly enough, the encapsulated sap was completely penetrated into human cancer cells within 30 min after addition. It showed that the encapsulation of the sap definitely increased its biological activities, which can expand its use to wide range of food industries.

Immunomodulatory Effects of β-sitosterol and Daucosterol Isolated from Dioscorea batatas on LPS-stimulated RAW 264.7 and TK-1 Cells (산약에서 분리한 β-sitosterol과 daucosterol의 RAW 264.7 세포와 TK-1 세포에서의 면역 활성 조절 효능)

  • Park, Min-Kyung;Cho, Sehee;Ahn, Tae-Kyu;Kim, Do-Hyun;Kim, So-Yeon;Lee, Jin-Wook;Kim, Jee-In;Seo, Eul-Won;Son, Kun-Ho;Lim, Jae-Hwan
    • Journal of Life Science
    • /
    • v.30 no.4
    • /
    • pp.359-369
    • /
    • 2020
  • Although many studies on immune modulatory materials have used RAW 264.7 cells, few have used T cell-derived TK-1 cell lines. Moreover, although some studies have investigated the efficacy of plant-derived β-sitosterol, few have examined the immunomodulatory activity of its analogue, daucosterol. In this study, β-sitosterol and daucosterol were isolated from D. batatas and identified by nuclear magnetic resonance spectroscopy. To evaluate the immune-enhancing or inhibitory effects of the isolated phytosterols, the expression levels of the inflammatory response genes COX-2, TNF-α, IL-6, and iNOS were analyzed by RT-PCR. The relative expression levels of TNF-α and iNOS in RAW 264.7 cells were increased more than threefold with β-sitosterol treatment comparing to those of untreated control. In the case of TK-1 cells, the expression level of TNF-α was decreased and the expression level of iNOS was increased in a β-sitosterol concentration-dependent manner. The expression levels of COX-2, TNF-α, and IL-6 increased by approximately 0.7-1.2 times in RAW 264.7 cells treated with daucosterol compared to those of untreated control, but iNOS expression decreased by 0.8-0.18 times. In the case of daucosterol-treated TK-1 cells, the expression levels of TNF-α, IL-6, and iNOS were markedly reduced from those of TK-1 cells treated only with lipopolysaccaride. As a conclusion, β-sitosterol treatment increased TNF-α and iNOS expression levels in RAW 264.7 cells, thus exerting an immune- boosting effect. However, in TK-1 cells, iNOS expression increased while TNF-α expression decreased, indicating an immunosuppressive activity of β-sitosterol. Daucosterol appears to exert an immunosuppressive effect in both macrophages and T cell lines by inhibiting iNOS expression in RAW 264.7 cells and greatly inhibiting the expression of TNF-α, IL-6, and iNOS in TK-1 cells.