• 제목/요약/키워드: Immune metabolite

검색결과 38건 처리시간 0.028초

티로신 키나아제 저해제의 간독성에 대한 고찰 (Reviews on the Hepatotoxicity of Tyrosine Kinase Inhibitors)

  • 한지민;곽혜선
    • 한국임상약학회지
    • /
    • 제29권4호
    • /
    • pp.223-230
    • /
    • 2019
  • Background: Small-molecule tyrosine kinase inhibitors (TKIs) have had major impacts on anticancer therapy by targeting the catalytic activities of dysregulated tyrosine kinases. TKIs have not presented traditional toxicities; however, some serious adverse effects, including hepatotoxicity, have been documented in clinical trials and post-marketing surveillance. Although TKI-induced hepatotoxicity can cause severe clinical complications in patients, the underlying mechanism is still unclear. Methods: Studies on TKI-induced hepatotoxicity were identified by Pubmed search, and relevant articles were reviewed. Results: Immunoallergic reaction, cytochrome P (CYP) 450 polymorphisms, and formation of reactive metabolites are under consideration as mechanisms of TKI-induced hepatotoxicity. Host protein-drug metabolite conjugates are recognized as antigens by class II major histocompatibility complexes and are believed to cause liver injuries. Polymorphisms in CYP, which influences TKI metabolism, can slow TKI metabolism and may induce development of hepatotoxicity. The formation of reactive metabolites during drug metabolism can induce hepatotoxicity by directly causing cytotoxicity, leading to cell dysfunction, and indirect toxicity by mediating secondary immune reactions. Concurrent use of various medications with TKI can also cause hepatotoxicity by affecting drug transporter or enzyme activities. Conclusion: Periodic monitoring of patients taking TKIs and risk/benefit reassessments though post marketing surveillance are necessary to prevent hepatotoxicity.

Metabolomics reveals potential plateau adaptability by regulating inflammatory response and oxidative stress-related metabolism and energy metabolism pathways in yak

  • Huang, Meizhou;Zhang, Xin;Yan, Wenjun;Liu, Jingjing;Wang, Hui
    • Journal of Animal Science and Technology
    • /
    • 제64권1호
    • /
    • pp.97-109
    • /
    • 2022
  • Species are facing strong selection pressures to adapt to inhospitable high-altitude environments. Yaks are a valuable species and an iconic symbol of the Qinghai-Tibet Plateau. Extensive studies of high-altitude adaptation have been conducted, but few have focused on metabolism. In the present study, we determined the differences in the serum metabolomics between yaks and the closely related species of low-altitude yellow cattle and dairy cows. We generated high-quality metabolite profiling data for 36 samples derived from the three species, and a clear separation trend was obtained between yaks and the other animals from principal component analysis. In addition, we identified a total of 63 differentially expressed metabolites among the three species. Functional analysis revealed that differentially expressed metabolites were related to the innate immune activation, oxidative stress-related metabolism, and energy metabolism in yaks, which indicates the important roles of metabolites in high-altitude adaptation in yaks. The results provide new insights into the mechanism of adaptation or acclimatization to high-altitude environments in yaks and hypoxia-related diseases in humans.

한우 송아지 모체 포육능력별 혈중 대사물질, 증체 및 질병 발생 (Effects of Maternal Nursing Potential on Blood Metabolites, Body Weight Gain and Disease Occurrence of Hanwoo Calves)

  • 권응기;박병기;조영무;정영훈;장선식;조원모;전병수;강수원;이창우;백봉현
    • Journal of Animal Science and Technology
    • /
    • 제48권6호
    • /
    • pp.889-896
    • /
    • 2006
  • 본 연구는 한우송아지 모축의 포육능력별 육성률과 밀접한 관계가 있는 혈중 성장면역관련물질, 증체 및 질병 발병율을 조사하기 위해 수행되었다. 시험축은 축산연구소에서 다형성 발굴을 위해 보유중인 계통조성축으로부터 생산된 한우 송아지 40두를 공시하여 모축의 포육능력에 따라 고능력과 저능력구에 각각 20두씩 배치하여 두 개의 처리구를 두었다. 송아지 혈중 IGF-I, RBC, Ca 및 IP 농도는 생후 5일령에서 RBC 농도가 고능력 처리구에서 높게 조사된 것을 제외하고는, 전 시험기간 동안 이들 물질의 농도는 송아지 모축의 포육능력에 상관없이 두 처리구간 유사하였다. 한편, 송아지 혈중 IgG, albumin, total protein 및 GGT 농도는 모축의 포육능력에 상관없이 두 시험구간 유사하였으며, 반면에 이들 물질 중 total protein이 조사 기간 동안 일정 농도를 유지한 것을 제외하고는, IgG, albumin 및 GGT 농도는 송아지 생시 및 생후 일령에 의한 영향을 받았다. 송아지 체중은 모축 포육능력에 의한 직접적인 영향은 없었지만, 고능력 시험구에서 이유후 6개월령까지 체중이 증가하는 경향을 보였으며, 호흡기 질병과 설사 발병율은 고능력 시험구에서 감소되는 경향을 보였다. 따라서 한우의 포육능력은 포유기 및 이유 후 송아지의 성장과 면역에 부분적 영향을 미치며, 질병에 대한 면역력 증진에 영향을 미치는 것으로 사료된다.

벤질리덴아세톤 유도 화합물들의 곤충면역반응 억제와 살균력 비교 분석 (Comparative Analysis of Benzylideneacetone-derived Compounds on Insect Immunosuppressive and Antimicrobial Activities)

  • 서삼열;천원수;홍용표;이영근;김용균
    • 한국응용곤충학회지
    • /
    • 제51권3호
    • /
    • pp.245-253
    • /
    • 2012
  • 벤질리덴아세톤(benzylinedeneacetone: BZA)은 두 곤충병원세균인 Xenorhabdus nematophila와 Photorhabdus temperata subsp. temperata에서 유래된 대사산물의 일종이다. 이 물질은 곤충의 세포성 및 체액성 면역반응을 억제하며 또한 다양한 세균이나 곰팡이에 대해 항생효과를 갖고 있다. 그러나 이 물질이 갖는 비교적 높은 약해와 낮은 식물체 침투력은 효과적 농약으로 개발하는 데 어려움을 주고 있다. 본 연구에서는 다섯 개의 서로 다른 BZA 유사체를 스크리닝하여 면역억제 및 항균활성을 유지하면서 비교적 용해도가 높고 약해가 낮은 물질을 선발하였다. BZA의 벤젠 고리에 수산기가 붙은 유도체는 면역억제 및 항균활성이 뚜렷이 낮아졌다. 또한 BZA의 케톤기를 카르복실기로 변형하면 면역억제와 항균활성을 잃게 되었다. 그러나 BZA의 탄화수소 사슬을 짧게 하여 형성된 아세테이트 유도체인 4-hydroxyphenylacetic acid (HPA)는 면역억제와 항균활성을 잃지 않았다. 또한 HPA는 BZA 보다 고추(Capsicum annuum)에 대해 약해가 낮은 것으로 나타났다. 이 연구는 낮은 약해를 유발하면서 높은 곤충면역억제와 식물병원균에 대해 높은 항균활성을 보이는 BZA 유도체를 선발하였다.

고농도 감마 토코페롤 보충식이가 흡연에 노출된 쥐의 혈액 및 조직 비타민 E와 대사산물 농도에 미치는 영향 (Effects of Gamma-Tocopherol (GT) Supplementation on Vitamin E Concentration in Cigarette Smoke (CS) Exposed Mice)

  • 임윤숙
    • Journal of Nutrition and Health
    • /
    • 제41권2호
    • /
    • pp.135-140
    • /
    • 2008
  • 흡연은 활성 산소/질소종의 생성을 증가시켜 체내 산화적 스트레스를 증가시키고 폐의 염증을 유발한다. 이는 흡연자들의 체내 항산화 영양소들의 감소와 밀접한 관계를 가지는 것으로 알려져 있다. 본 연구에서는 항산화, 항염증 기능을 가진 비타민 E 중 식이에 많이 포함되어 있는 GT를 이용하여 흡연에 의한 항산화, 항염증 작용을 알아보기 위한 선행 연구로 고농도의 GT 식이가 혈액과 간, 폐의 AT, GT농도와 이들의 대샤산물인 CEHC 농도에 미치는 영향에 대하여 알아보고자 실시하였다. 연구 결과 고농도 GT 식이는 체내 혈액과 간, 폐 조직에 GT를 축적시키고 G-CEHC의 배설을 증가시켰다. 흡연은 대조군의 혈액과 폐 AT 농도는 증가시켰지만, 고농도 GT군의 혈액과 폐의 GT농도와 간의 G-CEHC의 농도를 감소 시켰다. 이러한 변화는 흡연에 의한 산화적 스트레스 상태에서 각기 다른 기능을 가진 조직의 요구량에 따라, 폐의 이용률을 높이기 위해 혈액으로 운반되는 양을 증가시키고 폐로의 운반을 임시적으로 증가시켜 조직의 AT, GT 농도를 선택적으로 조절하고 GT의 생체 이용률의 증가 때문이라 사료된다. 하지만 정확한 기전에 대한 연구들이 부족한 실정이므로 고농도의 GT 식이가 흡연에 의해 유도된 체내 산화적 스트레스와 폐의 염증 반응에 긍정적인 효과를 알아보기 위한 후속 연구가 절설히 필요한 것으로 사료된다.

Vitamin D Receptor Gene TaqI, BsmI and FokI Polymorphisms in Korean Patients with Tuberculosis

  • Kang, Tae-Jin;Jin, Song-Hou;Yeum, Chung-Eun;Lee, Seong-Beom;Kim, Chi-Hong;Lee, Sang-Haak;Kim, Kwan-Hyoung;Shin, Eun-Soon;Chae, Gue-Tae
    • IMMUNE NETWORK
    • /
    • 제11권5호
    • /
    • pp.253-257
    • /
    • 2011
  • Background: The active metabolite (1, 25- dihydroxycholecalciferol) of vitamin D (25-hydroxycholecalciferol) leads to activation of macrophages and deficiency of vitamin D seems to be involved in the risk of tuberculosis. The effects of vitamin D are exerted by interaction with the vitamin D receptor (VDR) and may be influenced by polymorphism in the VDR gene. In this study, variation in the VDR gene was investigated in Korean population with tuberculosis. Methods: We typed three VDR polymorphisms of restriction endonuclease sites for TaqI, BsmI and FokI in 155 patients with tuberculosis and 105 healthy volunteers. Results: The frequencies of FokI genotypes determined from TB patients were 29.13% for FF, 56.31% for Ff, and 14.56% for ff. We observed 1.4-fold increased prevalence of the Ff genotype in TB patients compared with normal healthy groups (p=0.0857). However, there was no significant association between the genotype groups, TB patient and normal control, for FokI polymorphism. There was also no significant association between VDR gene and tuberculosis in another polymorphism (BsmI and TaqI). Conclusion: Three polymorphisms (TaqI, BsmI and FokI) in the VDR gene do not appear to be responsible for host susceptibility to human tuberculosis in Korean population.

Hydroquinone suppresses IFN-β expression by targeting AKT/IRF3 pathway

  • Kim, Yong;Kim, Han Gyung;Han, Sang Yun;Jeong, Deok;Yang, Woo Seok;Kim, Jung-Il;Kim, Ji Hye;Yi, Young-Su;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권5호
    • /
    • pp.547-554
    • /
    • 2017
  • Previous studies have demonstrated the role of hydroquinone (HQ), a hydroxylated benzene metabolite, in modulating various immune responses; however, its role in macrophage-mediated inflammatory responses is not fully understood. In this study, the role of HQ in inflammatory responses and the underlying molecular mechanism were explored in macrophages. HQ down-regulated the expression of interferon $(IFN)-{\beta}$ mRNA in LPS-stimulated RAW264.7 cells without any cytotoxicity and suppressed interferon regulatory factor (IRF)-3-mediated luciferase activity induced by TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF) and TANK-binding kinase 1 (TBK1). A mechanism study revealed that HQ inhibited IRF-3 phosphorylation induced by lipopolysaccharide (LPS), TRIF, and AKT by suppressing phosphorylation of AKT, an upstream kinase of the IRF-3 signaling pathway. IRF-3 phosphorylation is highly induced by wild-type AKT and poorly induced by an AKT mutant, AKT C310A, which is mutated at an inhibitory target site of HQ. We also showed that HQ inhibited IRF-3 phosphorylation by targeting all three AKT isoforms (AKT1, AKT2, and AKT3) in RAW264.7 cells and suppressed IRF-3-mediated luciferase activities induced by AKT in HEK293 cells. Taken together, these results strongly suggest that HQ inhibits the production of a type I IFN, $IFN-{\beta}$, by targeting AKTs in the IRF-3 signaling pathway during macrophage-mediated inflammation.

Novel Modification of Growth Medium Enables Efficient E. coli Expression and Simple Purification of an Endotoxin-Free Recombinant Murine Hsp70 Protein

  • Zachova, Katerinat;Krupka, Michal;Chamrad, Ivo;Belakova, Jana;Horynova, Milada;Weigl, Evzen;Sebela, Marek;Raska, Milan
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권7호
    • /
    • pp.727-733
    • /
    • 2009
  • Heat shock protein 70 kDa (hsp70), a molecular chaperone involved in folding of nascent proteins, has been studied for its ability to activate innate and specific immunity. High purity hsp70 preparation is generally required for immunization experiments, because endotoxins and other immunologically active contaminants may affect immune responses independently of hsp70. We have developed a novel modification of E. coli-expression medium that enabled a simple two-step production and purification method for endotoxin-free recombinant hsp70. During Ni-NTA-based affinity purification of hsp70, a contaminating protein from host E. coli cells, L-glutamine-n-fructose-6-phosphate aminotransferase (GFAT), was identified. By testing various compounds, supplementation of growth medium with a GFAT metabolite,N-acetylglucosamine, was found to reduce GFAT expression and increase the total hsp70 yield five times. The new protocol is based on column purification of His-tagged hsp70 protein produced by E. coli with the modified medium, followed by endotoxin removal by Triton X-114 extraction. This approach yielded hsp70 with high purity and minimal endotoxin contamination, making the final product acceptable for immunization experiments. In summary, a simple modification of growth medium allowed production of recombinant mouse hsp70 in high yield and purity, thus compatible with immunological studies. This protocol may be useful for production of other Histagged proteins expressed in E. coli.

Scant Extracellular NAD Cleaving Activity of Human Neutrophils is Down-Regulated by fMLP via FPRL1

  • Hasan, Md. Ashraful;Sultan, Md. Tipu;Ahn, Won-Gyun;Kim, Yeon-Ja;Jang, Ji-Hye;Hong, Chang-Won;Song, Dong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권6호
    • /
    • pp.497-502
    • /
    • 2014
  • Extracellular nicotinamide adenine dinucleotide (NAD) cleaving activity of a particular cell type determines the rate of the degradation of extracellular NAD with formation of metabolites in the vicinity of the plasma membrane, which has important physiological consequences. It is yet to be elucidated whether intact human neutrophils have any extracellular NAD cleaving activity. In this study, with a simple fluorometric assay utilizing $1,N^6$-ethenoadenine dinucleotide (etheno-NAD) as the substrate, we have shown that intact peripheral human neutrophils have scant extracellular etheno-NAD cleaving activity, which is much less than that of mouse bone marrow neutrophils, mouse peripheral neutrophils, human monocytes and lymphocytes. With high performance liquid chromatography (HPLC), we have identified that ADP-ribose (ADPR) is the major extracellular metabolite of NAD degradation by intact human neutrophils. The scant extracellular etheno-NAD cleaving activity is decreased further by N-formyl-methionine-leucine-phenylalanine (fMLP), a chemoattractant for neutrophils. The fMLP-mediated decrease in the extracellular etheno-NAD cleaving activity is reversed by WRW4, a potent FPRL1 antagonist. These findings show that a much less extracellular etheno-NAD cleaving activity of intact human neutrophils compared to other immune cell types is down-regulated by fMLP via a low affinity fMLP receptor FPRL1.

Effects of Mancozeb on the Activities of Murine Peritoneal Macrophages In Vitro and Ex Vivo

  • Chung Ae-Hee;Pyo Myoung-Yun
    • Archives of Pharmacal Research
    • /
    • 제28권1호
    • /
    • pp.100-105
    • /
    • 2005
  • Mancozeb (MCZ) is known to have detrimental effects on the reproductive system, but the toxicity of MCZ on immune responses has not been systematically investigated. We investigated the effects of MCZ exposure on the activities of murine peritoneal macrophages through evaluation of MCZ-induced alteration of nitric oxide (NO) production and tumor necrosis $factor-{\alpha}(TNF-\alpha)$ synthesis. Macrophages were examined ex vivo from mice orally treated with various doses of MCZ for 5 consecutive days per week for 4 weeks (subacute exposure, 250, 1000, 1500 mg/kg/day) followed by culture for 2 $(TNF-{\alpha})$ or 3 days (NO) in the presence of LPS plus $IFN-{\gamma}$. Macrophages from naive mice were also cultured with various concentrations of MCZ (0.05, 0.25, 0.5, 1 and 2 ${\mu}g//mIL$ in the presence of LPS plus $IFN-{\gamma}$ for 2 $(TNF-{\alpha})$ or 3 days (NO) in vitro. NO production was decreased with the in vitro exposure to all concentrations of MCZ. However, the amount of NO production by peritoneal macrophages from MCZ-subacutely exposed mice was increased in comparision with that of control group. In vitro, MCZ suppressed $(TNF-\alpha)$ secretion with significant reduction at 2 ${\mu}g/mL$ MCZ. Conversely, $(TNF-{\alpha})$ release was enhanced ex vivo. This study provides the substantial evidence on MCZ-induced alternation in macrophage activity. In order to clearly understand the contrasting effect of MCZ on peritoneal macrophage activity, it is necessary to further investigate the influence of major metabolite of MCZ (ETU) exposure on the NO production and $(TNF-{\alpha})$ synthesis.