DOI QR코드

DOI QR Code

Reviews on the Hepatotoxicity of Tyrosine Kinase Inhibitors

티로신 키나아제 저해제의 간독성에 대한 고찰

  • Han, Ji Min (College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University) ;
  • Gwak, Hye Sun (College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University)
  • 한지민 (이화여자대학교 약학대학) ;
  • 곽혜선 (이화여자대학교 약학대학)
  • Received : 2019.09.25
  • Accepted : 2019.11.30
  • Published : 2019.12.31

Abstract

Background: Small-molecule tyrosine kinase inhibitors (TKIs) have had major impacts on anticancer therapy by targeting the catalytic activities of dysregulated tyrosine kinases. TKIs have not presented traditional toxicities; however, some serious adverse effects, including hepatotoxicity, have been documented in clinical trials and post-marketing surveillance. Although TKI-induced hepatotoxicity can cause severe clinical complications in patients, the underlying mechanism is still unclear. Methods: Studies on TKI-induced hepatotoxicity were identified by Pubmed search, and relevant articles were reviewed. Results: Immunoallergic reaction, cytochrome P (CYP) 450 polymorphisms, and formation of reactive metabolites are under consideration as mechanisms of TKI-induced hepatotoxicity. Host protein-drug metabolite conjugates are recognized as antigens by class II major histocompatibility complexes and are believed to cause liver injuries. Polymorphisms in CYP, which influences TKI metabolism, can slow TKI metabolism and may induce development of hepatotoxicity. The formation of reactive metabolites during drug metabolism can induce hepatotoxicity by directly causing cytotoxicity, leading to cell dysfunction, and indirect toxicity by mediating secondary immune reactions. Concurrent use of various medications with TKI can also cause hepatotoxicity by affecting drug transporter or enzyme activities. Conclusion: Periodic monitoring of patients taking TKIs and risk/benefit reassessments though post marketing surveillance are necessary to prevent hepatotoxicity.

Keywords

References

  1. Krause DS and Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med 2005;353(2):172-87. https://doi.org/10.1056/NEJMra044389
  2. Chen MH, Kerkela R, Force T. Mechanisms of cardiac dysfunction associated with tyrosine kinase inhibitor cancer therapeutics. Circulation 2008;118(1):84-95. https://doi.org/10.1161/CIRCULATIONAHA.108.776831
  3. Orphanos GS, Ioannidis GN, Ardavanis AG. Cardiotoxicity induced by tyrosine kinase inhibitors. Acta Oncol 2009;48(7):964-70. https://doi.org/10.1080/02841860903229124
  4. Cohen MH, Williams G, Johnson JR, et al. Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia. Clin Cancer Res 2002;8(5):935-42.
  5. Shah DR, Shah RR, Morganroth J. Tyrosine kinase inhibitors: their on-target toxicities as potential indicators of efficacy. Drug Saf 2013;36(6):413-26. https://doi.org/10.1007/s40264-013-0050-x
  6. Shah RR, Morganroth J, Shah DR. Cardiovascular safety of tyrosine kinase inhibitors: with a special focus on cardiac repolarisation (QT interval). Drug Saf 2013;36(5):295-316. https://doi.org/10.1007/s40264-013-0047-5
  7. Schutz FA, Je Y, Choueiri TK. Hematologic toxicities in cancer patients treated with the multi-tyrosine kinase sorafenib: a metaanalysis of clinical trials. Crit Rev Oncol Hematol 2011;80(2):291-300. https://doi.org/10.1016/j.critrevonc.2010.11.007
  8. Ghatalia P, Je Y, Mouallem NE, et al. Hepatotoxicity with vascular endothelial growth factor receptor tyrosine kinase inhibitors: A meta-analysis of randomized clinical trials. Crit Rev Oncol Hematol 2015;93(3):257-76. https://doi.org/10.1016/j.critrevonc.2014.11.006
  9. Munster PN, Britten CD, Mita M, et al. First study of the safety, tolerability, and pharmacokinetics of CP-724,714 in patients with advanced malignant solid HER2-expressing tumors. Clin Cancer Res 2007;13(4):1238-45. https://doi.org/10.1158/1078-0432.CCR-06-1539
  10. Eder JP, Shapiro GI, Appleman LJ, et al. A phase I study of foretinib, a multi-targeted inhibitor of c-Met and vascular endothelial growth factor receptor 2. Clin Cancer Res 2010;16(13):3507-16. https://doi.org/10.1158/1078-0432.CCR-10-0574
  11. Shah RR, Morganroth J, Shah DR. Hepatotoxicity of tyrosine kinase inhibitors: clinical and regulatory perspectives. Drug Saf 2013;36(7):491-503. https://doi.org/10.1007/s40264-013-0048-4
  12. Takeda M, Okamoto I, Nakagawa K. Pooled safety analysis of EGFR-TKI treatment for EGFR mutation-positive non-small cell lung cancer. Lung Cancer 2015;88(1):74-9. https://doi.org/10.1016/j.lungcan.2015.01.026
  13. Jackson K, Durandis R, Vergne MJIjoms. Role of cytochrome P450 enzymes in the metabolic activation of tyrosine kinase inhibitors. Int J Mol Sci 2018;19(8):2367. https://doi.org/10.3390/ijms19082367
  14. Feng B, Xu JJ, Bi YA, et al. Role of hepatic transporters in the disposition and hepatotoxicity of a HER2 tyrosine kinase inhibitor CP-724,714. Toxicol Sci 2009;108(2):492-500. https://doi.org/10.1093/toxsci/kfp033
  15. Teo YL, Ho HK, Chan A. Risk of tyrosine kinase inhibitors-induced hepatotoxicity in cancer patients: a meta-analysis. Cancer Treat Rev 2013;39(2):199-206. https://doi.org/10.1016/j.ctrv.2012.09.004
  16. Powles T, Bracarda S, Chen M, et al. Characterisation of liver chemistry abnormalities associated with pazopanib monotherapy: a systematic review and meta-analysis of clinical trials in advanced cancer patients. Eur J Cancer 2015;51(10):1293-302. https://doi.org/10.1016/j.ejca.2015.03.019
  17. Moy B, Kirkpatrick P, Kar S, Goss P. Lapatinib. Nat Rev Drug Discov 2017;6(6):431-2. https://doi.org/10.1038/nrd2332
  18. Gunawan BK and Kaplowitz N. Mechanisms of drug-induced liver disease. Clin Liver Dis 2007;11(3):459-75. https://doi.org/10.1016/j.cld.2007.06.001
  19. Wong WM, Wu PC, Yuen MF, et al. Antituberculosis drug-related liver dysfunction in chronic hepatitis B infection. Hepatology 2000;31(1):201-6. https://doi.org/10.1002/hep.510310129
  20. Levy M. Role of viral infections in the induction of adverse drug reactions. Drug Saf 1997;16(1):1-8. https://doi.org/10.2165/00002018-199716010-00001
  21. Spraggs CF, Budde LR, Briley LP, et al. HLA-DQA1*02:01 is a major risk factor for lapatinib-induced hepatotoxicity in women with advanced breast cancer. J Clin Oncol 2011;29(6):667-73. https://doi.org/10.1200/JCO.2010.31.3197
  22. Schaid DJ, Spraggs CF, McDonnell SK, et al. Prospective validation of HLA-DRB1* 07: 01 allele carriage as a predictive risk factor for lapatinib-induced liver injury. J Clin Oncol 2014;32(22):2296-303. https://doi.org/10.1200/jco.2013.52.9867
  23. Tangamornsuksan W, Kongkaew C, Scholfield CN, Subongkot S, Lohitnavy M. HLA-DRB1*07:01 and lapatinib-induced hepatotoxicity: a systematic review and meta-analysis. Pharmacogenomics J 2019, in press.
  24. Xu C-F, Johnson T, Wang X, et al. HLA-B* 57: 01 confers susceptibility to pazopanib-associated liver injury in patients with cancer. Clin Cancer Res 2016;22(6):1371-7. https://doi.org/10.1158/1078-0432.CCR-15-2044
  25. Xu C-F, Reck BH, Goodman VL, et al. Association of the hemochromatosis gene with pazopanib-induced transaminase elevation in renal cell carcinoma. J Hepatol 2011;54(6):1237-43. https://doi.org/10.1016/j.jhep.2010.09.028
  26. Danielson PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab 2002;3(6):561-97. https://doi.org/10.2174/1389200023337054
  27. Waxman DJ. P450 gene induction by structurally diverse xenochemicals: central role of nuclear receptors CAR, PXR, and PPAR. Arch Biochem Biophys 1999;369(1):11-23. https://doi.org/10.1006/abbi.1999.1351
  28. Chalasani N, Fontana RJ, Bonkovsky HL, et al. Causes, clinical features, and outcomes from a prospective study of drug-induced liver injury in the United States. Gastroenterology 2008;135(6):1924-34. https://doi.org/10.1053/j.gastro.2008.09.011
  29. Andrade RJ, Agundez JA, Lucena MI, Martinez C, Cueto R, Garcia-Martin E. Pharmacogenomics in drug induced liver injury. Curr Drug Metab 2009;10(9):956-70. https://doi.org/10.2174/138920009790711805
  30. Sun F, Chen Y, Xiang Y, Zhan S. Drug-metabolising enzyme polymorphisms and predisposition to anti-tuberculosis drug-induced liver injury: a meta-analysis. Int J Tuberc Lung Dis 2008;12(9):994-1002.
  31. Kijima T, Shimizu T, Nonen S, et al. Safe and successful treatment with erlotinib after gefitinib-induced hepatotoxicity: difference in metabolism as a possible mechanism. J Clin Oncol 2011;29(19):e588-90. https://doi.org/10.1200/JCO.2010.34.3368
  32. Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol 2010;11(2):121-8. https://doi.org/10.1016/S1470-2045(09)70364-X
  33. Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010;362(25):2380-8. https://doi.org/10.1056/NEJMoa0909530
  34. Zhou C, Wu Y-L, Chen G, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutationpositive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 2011;12(8):735-42. https://doi.org/10.1016/S1470-2045(11)70184-X
  35. Li J, Zhao M, He P, Hidalgo M, Baker SD. Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin Cancer Res 2007;13(12):3731-7. https://doi.org/10.1158/1078-0432.CCR-07-0088
  36. Brockmoller J, Kirchheiner J, Schmider J, et al. The impact of the CYP2D6 polymorphism on haloperidol pharmacokinetics and on the outcome of haloperidol treatment. Clin Pharmacol Ther 2002;72(4):438-52. https://doi.org/10.1067/mcp.2002.127494
  37. Gan SH, Ismail R, Adnan WAW, Zulmi W. Impact of CYP2D6 genetic polymorphism on tramadol pharmacokinetics and pharmacodynamics. Mol Diagn Ther 2007;11(3):171-81. https://doi.org/10.1007/BF03256239
  38. Swaisland HC, Cantarini MV, Fuhr R, Holt A. Exploring the relationship between expression of cytochrome P450 enzymes and gefitinib pharmacokinetics. Clin Pharmacokinet 2006;45(6):633-44. https://doi.org/10.2165/00003088-200645060-00006
  39. Ju C and Uetrecht JP. Mechanism of idiosyncratic drug reactions: reactive metabolites formation, protein binding and the regulation of the immune system. Curr Drug Metab 2002;3(4):367-77. https://doi.org/10.2174/1389200023337333
  40. Srivastava A, Maggs JL, Antoine DJ, Williams DP, Smith DA, Park BK. Role of reactive metabolites in drug-induced hepatotoxicity. Handb Exp Pharmacol 2010;(196):165-94.
  41. Beaune P, Dansette P, Mansuy D, et al. Human anti-endoplasmic reticulum autoantibodies appearing in a drug-induced hepatitis are directed against a human liver cytochrome P-450 that hydroxylates the drug. Proc Natl Acad Sci U S A 1987;84(2):551-5. https://doi.org/10.1073/pnas.84.2.551
  42. Kenny JR, Mukadam S, Zhang C, et al. Drug-drug interaction potential of marketed oncology drugs: in vitro assessment of timedependent cytochrome P450 inhibition, reactive metabolite formation and drug-drug interaction prediction. Pharm Res 2012;29(7):1960-76. https://doi.org/10.1007/s11095-012-0724-6
  43. Dahlin DC, Miwa GT, Lu A, Nelson SD. N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci U S A 1984;81(5):1327-31. https://doi.org/10.1073/pnas.81.5.1327
  44. Teng WC, Oh JW, New LS, et al. Mechanism-based inactivation of cytochrome P450 3A4 by lapatinib. Mol Pharmacol 2010;78(4):693-703. https://doi.org/10.1124/mol.110.065839
  45. Li X, Kamenecka TM, Cameron MD. Cytochrome P450-mediated bioactivation of the epidermal growth factor receptor inhibitor erlotinib to a reactive electrophile. Drug Metab Dispos 2010;38(7):1238-45. https://doi.org/10.1124/dmd.109.030361
  46. Li X, Kamenecka TM, Cameron MD. Bioactivation of the epidermal growth factor receptor inhibitor gefitinib: implications for pulmonary and hepatic toxicities. Chem Res Toxicol 2009;22(10):1736-42. https://doi.org/10.1021/tx900256y
  47. Li X, He Y, Ruiz CH, Koenig M, Cameron MD, Vokjovsky T. Characterization of dasatinib and its structural analogs as CYP3A4 mechanism-based inactivators and the proposed bioactivation pathways. Drug Metab Dispos 2009;37(6):1242-50. https://doi.org/10.1124/dmd.108.025932
  48. Moon JY, Han JM, Seo I, Gwak HS. Risk factors associated with the incidence and time to onset of lapatinib-induced hepatotoxicity. Breast Cancer Res Treat 2019, in press.
  49. Teo YL, Saetaew M, Chanthawong S, et al. Effect of CYP3A4 inducer dexamethasone on hepatotoxicity of lapatinib: clinical and in vitro evidence. Breast Cancer Res Treat 2012;133(2):703-11. https://doi.org/10.1007/s10549-012-1995-7
  50. Lee KW and Chan SL. Hepatotoxicity of targeted therapy for cancer. Expert Opin Drug Metab Toxicol 2016;12(7):789-802. https://doi.org/10.1080/17425255.2016.1190831
  51. Xu C, Xue Z, Bing N, et al. Concomitant use of pazopanib and simvastatin increases the risk of transaminase elevations in patients with cancer. Ann Oncol 2012;23(9):2470-1. https://doi.org/10.1093/annonc/mds249
  52. Dai C, Ma S, Wang F, et al. Lapatinib promotes the incidence of hepatotoxicity by increasing chemotherapeutic agent accumulation in hepatocytes. Oncotarget 2015;6(19):17738-52. https://doi.org/10.18632/oncotarget.3921
  53. Cho S, Yee J, Kim JY, Jeong Rhie S, Gwak HS. Effects of Concomitant Medication Use on Gefitinib?Induced Hepatotoxicity. J Clin Pharmacol 2018;58(2):263-8. https://doi.org/10.1002/jcph.1010
  54. Park BK, Pirmohamed M, Kitteringham NR. The role of cytochrome P450 enzymes in hepatic and extrahepatic human drug toxicity. Pharmacol Ther 1995;68(3):385-424. https://doi.org/10.1016/0163-7258(95)02013-6
  55. Murray M. Mechanisms and significance of inhibitory drug interactions involving cytochrome P450 enzymes. Int J Mol Med 1999;3(3):227-65.
  56. Sugatani J. Function, genetic polymorphism, and transcriptional regulation of human UDP-glucuronosyltransferase (UGT) 1A1. Drug Metab Pharmacokinet 2013;28(2):83-92. https://doi.org/10.2133/dmpk.DMPK-12-RV-096
  57. Duan SX, von Moltke LL, Greenblatt DJ, et al. Interindividual variability in acetaminophen glucuronidation by human liver microsomes: identification of relevant acetaminophen UDP-glucuronosyltransferase isoforms. J Pharmacol Exp Ther 2001;299(3):998-1006.
  58. Mutlib AE, Goosen TC, Bauman JN, Williams JA, Kulkarni S, Kostrubsky S. Kinetics of acetaminophen glucuronidation by UDP-glucuronosyltransferases 1A1, 1A6, 1A9 and 2B15. Potential implications in acetaminophen-induced hepatotoxicity. Chem Res Toxicol 2006;19(5):701-9. https://doi.org/10.1021/tx050317i
  59. Kostrubsky SE, Sinclair JF, Strom SC, et al. Phenobarbital and phenytoin increased acetaminophen hepatotoxicity due to inhibition of UDP-glucuronosyltransferases in cultured human hepatocytes. Toxicol Sci 2005;87(1):146-55. https://doi.org/10.1093/toxsci/kfi211
  60. Liu Y, Ramirez J, Ratain MJ. Inhibition of paracetamol glucuronidation by tyrosine kinase inhibitors. Br J Clin Pharmacol 2011;71(6):917-20. https://doi.org/10.1111/j.1365-2125.2011.03911.x
  61. Ridruejo E, Cacchione R, Villamil AG, Marciano S, Gadano AC, Mando OG. Imatinib-induced fatal acute liver failure. World J Gastroenterol 2007;13(48):6608-11. https://doi.org/10.3748/wjg.v13.i48.6608
  62. Kim DW, Tan EY, Jin Y, et al. Effects of imatinib mesylate on the pharmacokinetics of paracetamol (acetaminophen) in Korean patients with chronic myelogenous leukaemia. Br J Clin Pharmacol 2011;71(2):199-206. https://doi.org/10.1111/j.1365-2125.2010.03810.x
  63. Nassar I, Pasupati T, Judson JP, Segarra I. Reduced exposure of imatinib after coadministration with acetaminophen in mice. Indian J Pharmacol 2009;41(4):167-72. https://doi.org/10.4103/0253-7613.56071
  64. Mendez-Vidal MJ, Ortega EM, Pino AM, Valderrama BP, Viciana R. Management of adverse events of targeted therapies in normal and special patients with metastatic renal cell carcinoma. Cancer Metastasis Rev 2012;31(1):19-27. https://doi.org/10.1007/s10555-012-9355-y
  65. Klempner SJ, Choueiri TK, Yee E, Doyle LA, Schuppan D, Atkins MB. Severe pazopanib-induced hepatotoxicity: clinical and histologic course in two patients. J Clin Oncol 2012;30(27):e264-8. https://doi.org/10.1200/JCO.2011.41.0332
  66. Pariente A, Etcharry F, Cales V, Laborde Y, Ferrari S, Biour M. Imatinib mesylate-induced acute hepatitis in a patient treated for gastrointestinal stromal tumour. Eur J Gastroenterol Hepatol 2006;18(7):785-7. https://doi.org/10.1097/01.meg.0000216941.42306.0e
  67. Seki N, Uematsu K, Shibakuki R, Eguchi K. Promising new treatment schedule for gefitinib responders after severe hepatotoxicity with daily administration. J Clin Oncol 2006;24(19):3213-4. https://doi.org/10.1200/JCO.2006.05.7109
  68. Chen X, Pan Y, Zhang S, et al. Rechallenge with gefitinib following severe drug-induced hepatotoxicity in a patient with advanced non-small cell lung cancer: A case report and literature review. Oncol Lett 2014;7(3):878-80. https://doi.org/10.3892/ol.2013.1756
  69. Ku GY, Chopra A, Lopes Gde L Jr. Successful treatment of two lung cancer patients with erlotinib following gefitinib-induced hepatotoxicity. Lung Cancer 2010;70(2):223-5. https://doi.org/10.1016/j.lungcan.2010.08.012
  70. Gupta-Abramson V, Troxel AB, Nellore A, et al. Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol 2008;26(29):4714-9. https://doi.org/10.1200/JCO.2008.16.3279