• 제목/요약/키워드: Immune checkpoint ligand

검색결과 24건 처리시간 0.027초

Dancing with the Surgeon: Neoadjuvant and Adjuvant Immunotherapies from the Medical Oncologist's Perspective

  • Sehhoon Park
    • Journal of Chest Surgery
    • /
    • 제56권2호
    • /
    • pp.67-74
    • /
    • 2023
  • Perioperative treatment with conventional cytotoxic chemotherapy for resectable non-small cell lung cancer (NSCLC) has proven clinical benefits in terms of achieving a higher overall survival (OS) rate. With its success in the palliative treatment of NSCLC, immune checkpoint blockade (ICB) has now become an essential component of treatment, even as neoadjuvant or adjuvant therapy in patients with operable NSCLC. Both pre- and post-surgery ICB applications have proven clinical efficacy in preventing disease recurrence. In addition, neoadjuvant ICB combined with cytotoxic chemotherapy has shown a significantly higher rate of pathologic regression of viable tumors compared with cytotoxic chemotherapy alone. To confirm this, an early signal of OS benefit has been shown in a selected population, with programmed death ligand 1 expression ≥50%. Furthermore, applying ICB both pre- and post-surgery enhances its clinical benefits, as is currently under evaluation in ongoing phase III trials. Simultaneously, as the number of available perioperative treatment options increases, the variables to be considered for making treatment decisions become more complex. Thus, the role of a multidisciplinary team-based treatment approach has not been fully emphasized. This review presents up-to-date pivotal data that lead to practical changes in managing resectable NSCLC. From the medical oncologist's perspective, it is time to dance with surgeons to decide on the sequence of systemic treatment, particularly the ICB-based approach, accompanying surgery for operable NSCLC.

Current Understanding of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) Signaling in T-Cell Biology and Disease Therapy

  • Kim, Gil-Ran;Choi, Je-Min
    • Molecules and Cells
    • /
    • 제45권8호
    • /
    • pp.513-521
    • /
    • 2022
  • Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an immune checkpoint molecule that is mainly expressed on activated T cells and regulatory T (Treg) cells that inhibits T-cell activation and regulates immune homeostasis. Due to the crucial functions of CTLA-4 in T-cell biology, CTLA-4-targeted immunotherapies have been developed for autoimmune disease as well as cancers. CTLA-4 is known to compete with CD28 to interact with B7, but some studies have revealed that its downstream signaling is independent of its ligand interaction. As a signaling domain of CTLA-4, the tyrosine motif plays a role in inhibiting T-cell activation. Recently, the lysine motif has been shown to be required for the function of Treg cells, emphasizing the importance of CTLA-4 signaling. In this review, we summarize the current understanding of CTLA-4 biology and molecular signaling events and discuss strategies to target CTLA-4 signaling for immune modulation and disease therapy.

An update on immunotherapy with PD-1 and PD-L1 blockade

  • Koh, Sung Ae
    • Journal of Yeungnam Medical Science
    • /
    • 제38권4호
    • /
    • pp.308-317
    • /
    • 2021
  • Cancer is the leading cause of death and is on the rise worldwide. Until 2010, the development of targeted treatment was mainly focused on the growth mechanisms of cancer. Since then, drugs with mechanisms related to tumor immunity, especially immune checkpoint inhibitors, have proven effective, and most pharmaceutical companies are striving to develop related drugs. Programmed cell death-1 and programmed cell death ligand-1 inhibitors have shown great success in various cancer types. They showed durable and sustainable responses and were approved by the U.S. Food and Drug Administration. However, the response to inhibitors showed low percentages of cancer patients; 15% to 20%. Therefore, combination strategies with immunotherapy and conventional treatments were used to overcome the low response rate. Studies on combination therapy have typically reported improvements in the response rate and efficacy in several cancers, including non-small cell lung cancer, small cell lung cancer, breast cancer, and urogenital cancers. The combination of chemotherapy or targeted agents with immunotherapy is one of the leading pathways for cancer treatment.

Peripheral Blood Immune Cell-based Biomarkers in Anti-PD-1/PD-L1 Therapy

  • Kyung Hwan Kim;Chang Gon Kim;Eui-Cheol Shin
    • IMMUNE NETWORK
    • /
    • 제20권1호
    • /
    • pp.8.1-8.15
    • /
    • 2020
  • Immune checkpoint blockade targeting PD-1 and PD-L1 has resulted in unprecedented clinical benefit for cancer patients. Anti-PD-1/PD-L1 therapy has become the standard treatment for diverse cancer types as monotherapy or in combination with other anticancer therapies, and its indications are expanding. However, many patients do not benefit from anti-PD-1/PD-L1 therapy due to primary and/or acquired resistance, which is a major obstacle to broadening the clinical applicability of anti-PD-1/PD-L1 therapy. In addition, hyperprogressive disease, an acceleration of tumor growth following anti-PD-1/PD-L1 therapy, has been proposed as a new response pattern associated with deleterious prognosis. Anti-PD-1/PD-L1 therapy can also cause a unique pattern of adverse events termed immune-related adverse events, sometimes leading to treatment discontinuation and fatal outcomes. Investigations have been carried out to predict and monitor treatment outcomes using peripheral blood as an alternative to tissue biopsy. This review summarizes recent studies utilizing peripheral blood immune cells to predict various outcomes in cancer patients treated with anti-PD-1/PD-L1 therapy.

Hitting the complexity of the TIGIT-CD96-CD112R-CD226 axis for next-generation cancer immunotherapy

  • Jin, Hyung-seung;Park, Yoon
    • BMB Reports
    • /
    • 제54권1호
    • /
    • pp.2-11
    • /
    • 2021
  • Antibody-based therapeutics targeting the inhibitory receptors PD-1, PD-L1, or CTLA-4 have shown remarkable clinical progress on several cancers. However, most patients do not benefit from these therapies. Thus, many efforts are being made to identify new immune checkpoint receptor-ligand pathways that are alternative targets for cancer immunotherapies. Nectin and nectin-like molecules are widely expressed on several types of tumor cells and play regulatory roles in T- and NK-cell functions. TIGIT, CD226, CD96 and CD112R on lymphoid cells are a group of immunoglobulin superfamily receptors that interact with Nectin and nectin-like molecules with different affinities. These receptors transmit activating or inhibitory signals upon binding their cognate ligands to the immune cells. The integrated signals formed by their complex interactions contribute to regulating immune-cell functions. Several clinical trials are currently evaluating the efficacy of anti-TIGIT and anti-CD112R blockades for treating patients with solid tumors. However, many questions still need to be answered in order to fully understand the dynamics and functions of these receptor networks. This review addresses the rationale behind targeting TIGIT, CD226, CD96, and CD112R to regulate T- and NK-cell functions and discusses their potential application in cancer immunotherapy.

The Optimal Tumor Mutational Burden Cutoff Value as a Novel Marker for Predicting the Efficacy of Programmed Cell Death-1 Checkpoint Inhibitors in Advanced Gastric Cancer

  • Jae Yeon Jang;Youngkyung Jeon ;Sun Young Jeong ;Sung Hee Lim ;Won Ki Kang;Jeeyun Lee ;Seung Tae Kim
    • Journal of Gastric Cancer
    • /
    • 제23권3호
    • /
    • pp.476-486
    • /
    • 2023
  • Purpose: The optimal tumor mutational burden (TMB) value for predicting treatment response to programmed cell death-1 (PD-1) checkpoint inhibitors in advanced gastric cancer (AGC) remains unclear. We aimed to investigate the optimal TMB cutoff value that could predict the efficacy of PD-1 checkpoint inhibitors in AGC. Materials and Methods: Patients with AGC who received pembrolizumab or nivolumab between October 1, 2020, and July 27, 2021, at Samsung Medical Center in Korea were retrospectively analyzed. The TMB levels were measured using a next-generation sequencing assay. Based on receiver operating characteristic curve analysis, the TMB cutoff value was determined. Results: A total 53 patients were analyzed. The TMB cutoff value for predicting the overall response rate (ORR) to PD-1 checkpoint inhibitors was defined as 13.31 mutations per megabase (mt/Mb) with 56% sensitivity and 95% specificity. Based on this definition, 7 (13.2%) patients were TMB-high (TMB-H). The ORR differed between the TMB-low (TMB-L) and TMB-H (8.7% vs. 71.4%, P=0.001). The progression-free survival and overall survival (OS) for 53 patients were 1.93 (95% confidence interval [CI], 1.600-2.268) and 4.26 months (95% CI, 2.992-5.532). The median OS was longer in the TMB-H (20.8 months; 95% CI, 2.292-39.281) than in the TMB-L (3.31 months; 95% CI, 1.604-5.019; P=0.049). Conclusions: The TMB cutoff value for predicting treatment response in AGC patients who received PD-1 checkpoint inhibitor monotherapy as salvage treatment was 13.31 mt/Mb. When applying the programmed death ligand-1 status to TMB-H, patients who would benefit from PD-1 checkpoint inhibitors can be selected.

암줄기세포의 특성 및 면역관문억제 (Characteristics of Cancer Stem Cells and Immune Checkpoint Inhibition)

  • 최상훈;김형기
    • 생명과학회지
    • /
    • 제29권4호
    • /
    • pp.499-508
    • /
    • 2019
  • 암줄기세포는 전이와 재발의 주요한 요인이 되는 자가재생능력, 분화할 수 있는 능력, 치료에 대한 저항성 및 암 형성 능력의 특성을 가진다. WNT/${\beta}$-catenin, Hedgehog, Notch, BMI1, BMP 및 TGF-${\beta}$와 같은 암줄기세포의 특성을 획득 및 유지할 수 있는 신호기전의 연구 결과가 존재하지만, 현재까지 선택적으로 암줄기세포를 표적할 수 있는 치료 전략은 미미하다. 최근, 면역관문억제제인 CTLA-4, PD-1/PD-L1 단일클론항체는 흑색종, 폐암, 췌장암 및 혈액암에 괄목할만한 임상 시험 결과를 나타냈으며, 긴 항암지속효과와 적은 부작용은 기존 항암제보다 개선 된 모습을 보였다. 또한 두경부편평상피암, 흑색종, 유방암 줄기세포를 선택적으로 제거 하였다. 위의 결과를 종합하면, 면역관문억제제는 이전 항암제에 비해 효과적인 항암전략이며, 동시에 암줄기세포를 선택적으로 제거할 수 있는 가능성을 시사한다. 따라서 본 리뷰에서는 암줄기세포와 면역관문억제제의 이해를 통해, 면역관문억제제의 암줄기세포 표적 가능성에 대해 고찰하고자 한다.

상급종합병원 암센터에서 Nivolumab 사용평가와 치료성과에 미치는 영향인자 (Evaluation of Nivolumab Use and Factors related to Treatment Outcomes in a Cancer Center of a Top Tier General Hospital)

  • 엄고혜;조윤숙;이정연
    • 한국임상약학회지
    • /
    • 제28권2호
    • /
    • pp.88-94
    • /
    • 2018
  • Background: We strived to evaluate the status of nivolumab use and associated factors on the clinical efficacy of the drug. Methods: The study was retrospectively conducted in patients who had been administered nivolumab at least once at the cancer center of Seoul National University Hospital from June 2015 to April 2017. Data were collected from electronic medical records. A medication-use evaluation was performed based on the American Society of Health-System Pharmacists mediation-use guidelines. Results: Sixty-six of the 74 patients (89.2%) showed indications approved for nivolumab use by the Korean Ministry of Food and Drug Safety (MFDS; n=55) or the US Food and Drug Administration (FDA; n=11). Approximately 73.0% of the patients were administered the approved dose of 3 mg/kg but 25.7% were administered an unapproved fixed dose of 100 mg. The overall response rate was 21.7%, and the response rate of non-small cell lung cancer patients, who accounted for the largest number of indications, was 18.8%. Adverse reactions were found in 90.1% of the patients and were mostly mild (86%). The expression of programmed death-ligand 1 (PD-L1) was analyzed as a factor affecting treatment response (p=0.028, odds ratio [OR]=11.331). Conclusion: PD-L1 expression was found to affect treatment response. However, caution is required while using an unapproved dosage and in the absence of monitoring for effectiveness and safety. Therefore, an effective protocol or instruction manual for the proper use of nivolumab should be considered.

Novel Systemic Therapies for Advanced Gastric Cancer

  • Kim, Hong Jun;Oh, Sang Cheul
    • Journal of Gastric Cancer
    • /
    • 제18권1호
    • /
    • pp.1-19
    • /
    • 2018
  • Gastric cancer (GC) is the second leading cause of cancer mortality and the fourth most commonly diagnosed malignant diseases. While continued efforts have been focused on GC treatment, the introduction of trastuzumab marked the beginning of a new era of target-specific treatments. Considering the diversity of mutations in GC, satisfactory results obtained from various target-specific therapies were expected, yet most of them were unsuccessful in controlled clinical trials. There are several possible reasons underlying the failures, including the absence of patient selection depending on validated predictive biomarkers, the inappropriate combination of drugs, and tumor heterogeneity. In contrast to targeted agents, immuno-oncologic agents are designed to regulate and boost immunity, are not target-specific, and may overcome tumor heterogeneity. With the successful establishment of predictive biomarkers, including Epstein-Barr virus pattern, microsatellite instability status, and programmed death-ligand 1 (PD-L1) expression, as well as ideal combination regimens, a new frontier in the immuno-oncology of GC treatment is on the horizon. Since the field of immuno-oncology has witnessed innovative, practice-changing successes in other cancer types, several trials on GC are ongoing. Among immuno-oncologic therapies, immune checkpoint inhibitors are the mainstay of clinical trials performed on GC. In this article, we review target-specific agents currently used in clinics or are undergoing clinical trials, and highlight the future clinical application of immuno-oncologic agents in inoperable GC.

Artificial Intelligence in the Pathology of Gastric Cancer

  • Sangjoon Choi;Seokhwi Kim
    • Journal of Gastric Cancer
    • /
    • 제23권3호
    • /
    • pp.410-427
    • /
    • 2023
  • Recent advances in artificial intelligence (AI) have provided novel tools for rapid and precise pathologic diagnosis. The introduction of digital pathology has enabled the acquisition of scanned slide images that are essential for the application of AI. The application of AI for improved pathologic diagnosis includes the error-free detection of potentially negligible lesions, such as a minute focus of metastatic tumor cells in lymph nodes, the accurate diagnosis of potentially controversial histologic findings, such as very well-differentiated carcinomas mimicking normal epithelial tissues, and the pathological subtyping of the cancers. Additionally, the utilization of AI algorithms enables the precise decision of the score of immunohistochemical markers for targeted therapies, such as human epidermal growth factor receptor 2 and programmed death-ligand 1. Studies have revealed that AI assistance can reduce the discordance of interpretation between pathologists and more accurately predict clinical outcomes. Several approaches have been employed to develop novel biomarkers from histologic images using AI. Moreover, AI-assisted analysis of the cancer microenvironment showed that the distribution of tumor-infiltrating lymphocytes was related to the response to the immune checkpoint inhibitor therapy, emphasizing its value as a biomarker. As numerous studies have demonstrated the significance of AI-assisted interpretation and biomarker development, the AI-based approach will advance diagnostic pathology.