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ABSTRACT
Gastric cancer (GC) is the second leading cause of cancer mortality and the fourth most 
commonly diagnosed malignant diseases. While continued efforts have been focused 
on GC treatment, the introduction of trastuzumab marked the beginning of a new era 
of target-specific treatments. Considering the diversity of mutations in GC, satisfactory 
results obtained from various target-specific therapies were expected, yet most of them 
were unsuccessful in controlled clinical trials. There are several possible reasons underlying 
the failures, including the absence of patient selection depending on validated predictive 
biomarkers, the inappropriate combination of drugs, and tumor heterogeneity. In contrast 
to targeted agents, immuno-oncologic agents are designed to regulate and boost immunity, 
are not target-specific, and may overcome tumor heterogeneity. With the successful 
establishment of predictive biomarkers, including Epstein-Barr virus pattern, microsatellite 
instability status, and programmed death-ligand 1 (PD-L1) expression, as well as ideal 
combination regimens, a new frontier in the immuno-oncology of GC treatment is on the 
horizon. Since the field of immuno-oncology has witnessed innovative, practice-changing 
successes in other cancer types, several trials on GC are ongoing. Among immuno-oncologic 
therapies, immune checkpoint inhibitors are the mainstay of clinical trials performed on GC. 
In this article, we review target-specific agents currently used in clinics or are undergoing 
clinical trials, and highlight the future clinical application of immuno-oncologic agents in 
inoperable GC.
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INTRODUCTION

Gastric cancer (GC) is the second leading cause of cancer-related mortality and the fourth 
most commonly diagnosed malignant disease, with an estimated 740,000 cancer-related 
deaths and 990,000 new cases annually [1,2]. The prevalence of GC shows large regional 
variations [3]. The incidence of GC has decreased in the United States over the past 80 years. 
However, GC in South Korea accounts for approximately 17% of all prevalent cancer cases 
and about 12% of all cancer-related mortalities (nearly 9,000 deaths) annually [4]. The 
complete surgical resection of localized GC with the removal of adjacent lymph nodes is 
the only curative option, and patients with pathological stage II or III GC are recommended 
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adjuvant therapy in addition to surgery [5]. The Adjuvant Chemotherapy Trial of TS-1 for 
Gastric Cancer (ACTS-GC) and the Capecitabine and Oxaliplatin Adjuvant Study in Stomach 
Cancer (CLASSIC) trial have demonstrated survival benefits of adjuvant therapy after D2 
dissection surgery [6,7]. Unfortunately, due to the asymptomatic early phase of the disease, 
many patients with GC are diagnosed in advanced stages. Several phase III trials utilizing 
target-specific agents for inoperable and advanced GC have been conducted with very few 
favorable outcomes, specifically with trastuzumab (human epidermal growth factor receptor 
2 [HER2]-targeted monoclonal antibody) [8], ramucirumab (vascular endothelial growth 
factor receptor 2 [VEGFR2]-targeted monoclonal antibody) [9], and apatinib (VEGFR2-
targeted tyrosine kinase inhibitor [TKI]) [10]. Therefore, advances made to increase the 
survival rate of patients suffering from GC have been much slower than those concerned with 
other cancers over the past decade.

GC is considered as a heterogeneous disease carrying various genetic mutations [11]. While 
satisfactory results were expected from various target-specific agents, most of the trials with 
these agents were failures. The one-size-fits-all approach to treatment is considered a key 
reason for the failure of these trials, and patient selection based on appropriate biomarkers is 
essential for successful trials [12].

In this article, we review target-specific agents currently used in clinics or are undergoing 
clinical trials, and highlight the future clinical application of immuno-oncologic agents in 
inoperable GC.

ERBB FAMILY-TARGETING AGENTS

The HER2 protein is a member of the ErbB family comprising 4 kinds of receptor tyrosine 
kinases (RTKs). The ErbB family of proteins includes transmembrane receptors composed of 
an intracellular region with a tyrosine kinase residue, an extracellular ligand-binding domain, 
and a single hydrophobic transmembrane segment. The HER2 protein plays a crucial role in 
cancer cell biology [13], and mediates apoptosis, cellular differentiation, and tumorigenesis 
[14]. Compared with other members of the ErbB family, HER2 lacks an identifiable ligand. 
The ligand-free activation of the HER2 receptor occurs via hetero- or homo-dimerization 
with other ErbB family members, resulting in the upregulation of downstream signaling 
cascades, including RAS-RAF-mitogen-activated protein kinase (MAPK), MAPK-extracellular 
signal-regulated kinase (MEK), and phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian 
target of rapamycin (mTOR) pathways [15,16]. HER2 gene amplification has been reported in 
about 15%–30% of patients with breast cancer, and is associated with poor prognosis [17,18]. 
Its amplification also occurs in GC (approximately 7%–34% of patients), ovarian cancer, non-
small cell lung cancer, endometrial carcinoma, and salivary cancer [19-22].

Trastuzumab
Trastuzumab, a monoclonal antibody specifically targeting the extracellular domain of 
the HER2 protein, is reported to show remarkable antitumor activity in HER2-amplified 
xenograft models of human GC cell lines [23]. Based on these results, a randomized phase III 
Trastuzumab for Gastric Cancer (ToGA) trial was conducted as the first study demonstrating 
the efficacy of a target-specific agent in patients with advanced or metastatic GC [8]. The 
ToGA study enrolled patients treated with first-line palliative chemotherapy. In this trial, 
3,803 patients were evaluated for HER2 status by immunohistochemistry (IHC) as well as 
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fluorescence in situ hybridization (FISH), and 594 patients who showed 3+ on IHC or FISH 
positivity (HER2: centromeric probe for chromosome 17 [CEP17] ratio ≥2) were randomly 
assigned to receive chemotherapy (fluoropyrimidine+cisplatin) with or without trastuzumab. 
The median overall survival (OS) in patients who underwent chemotherapy+trastuzumab 
was 13.8 months (95% confidence interval [CI], 12–16) compared with 11.1 months (95% CI, 
10–13) in patients who underwent chemotherapy alone (hazard ratio [HR], 0.74; 95% CI, 
0.60–0.91; P=0.005). The median progression-free survival (PFS) in patients who received 
chemotherapy+trastuzumab was 6.7 months (95% CI, 6–8) compared with 5.5 months (95% 
CI, 5–6) in the other group (HR, 0.71; 95% CI, 0.59–0.85; P<0.001). In post hoc analyses, 
no improvement in OS with trastuzumab was observed in patients with HER2 IHC0/FISH+ 
or IHC1+/FISH+, while significant improvement in OS was observed in patients with HER2 
IHC2+/FISH+ or IHC3+. In cases of HER2 IHC scores of 0, 1+, or 3+, the concordance rate 
with FISH results exceeded 85%; however, the concordance rate with FISH results in the 
case of IHC2+ was only about 50%, suggesting that additional FISH tests were mandatory to 
determine HER2 expression levels [24]. Following the promising results of the ToGA trial 
in 2010, the Food and Drug Administration (FDA) approved trastuzumab for chemo-naïve 
HER2-overexpressing metastatic GC.

Pertuzumab
Pertuzumab is a monoclonal antibody inhibiting dimerization by targeting the HER2 
ectodomain [25]. The combination of trastuzumab with pertuzumab showed superior 
antitumor activities compared with the individual drugs in HER2-overexpressing xenograft 
models of human GC [26] as well as HER2-overexpressing metastatic breast cancer [27]. 
A phase III study designated as the JACOB trial involved patients who were randomized 
to receive pertuzumab or placebo in combination with trastuzumab, cisplatin, and 
fluoropyrimidine. This study was conducted to evaluate the efficacy of pertuzumab in 
addition to survival benefits observed in the ToGA trial with the first-line treatment of HER2-
positive metastatic GC. However, according to the results reported at the 2017 European 
Society for Medical Oncology Congress, the JACOB study failed to show a significant 
improvement in OS with the addition of pertuzumab, despite a 3.3-month increase in median 
OS (NCT01774786).

TKIs targeting HER2
Lapatinib, a small-molecule TKI targeting HER2 and epidermal growth factor receptor 
(EGFR), showed favorable clinical results in patients with HER2-positive metastatic breast 
cancer in a phase III, randomized, open-label study as well as in a meta-analysis report 
[28,29], and the FDA approved this drug in trastuzumab-resistant breast cancer patients. 
However, 2 phase III clinical trials conducted in GC patients were unsuccessful. In the 
phase III LOGiC trial, which enrolled 545 patients with HER2-positive GC, participants 
were randomized to receive capecitabine+oxaliplatin (CapeOx) with or without lapatinib 
as the first-line regimen. There was no significant benefit in OS (HR, 0.91; 95% CI, 
0.73–1.12; P=0.350) [30]. In the phase III TyTAN study, lapatinib was evaluated as a second-
line treatment in HER2-positive GC. Participants in this trial were randomized to receive 
paclitaxel treatment with or without lapatinib. No significant improvement in OS was 
observed (HR, 0.84; 95% CI, 0.64–1.11; P=0.104) [31].

Afatinib, another TKI targeting EGFR, HER2, and HER4 was approved by the FDA for the 
treatment of non-small cell lung cancer bearing EGFR mutations. Based on a preclinical 
study demonstrating tumor regression by afatinib treatment in HER2-amplified GC cell 
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xenograft models [32], 3 phase II trials of afatinib in GC are ongoing (NCT02501603, 
NCT01522768, and NCT01743365).

Trastuzumab-emtansine (T-DM1)
T-DM1 is a monoclonal antibody-microtubule inhibitor (maytansine) conjugate exhibiting 
both cytotoxic properties and antibody-dependent cytotoxicity [33]. T-DM1 exerted beneficial 
effects in patients with HER2-amplified metastatic breast cancer [34], and preclinical 
data indicated that T-DM1 is more efficacious than trastuzumab alone in GC cell xenograft 
models [35]. Given these results, a phase II/III trial of T-DM1, GATSBY (NCT01641939), 
was conducted in locally advanced or metastatic HER2-positive GC patients who exhibited 
disease progression following first-line treatment; however, T-DM1 did not improve OS 
compared with taxane (HR, 1.15; 95% CI, 0.89–1.43; P=0.860) [36].

Agents targeting EGFR
Agents targeting EGFR have been used as a standard treatment for many cancers, including 
colorectal cancer, non-small cell lung cancer, pancreatic cancer, breast cancer, and head & 
neck cancer. Anti-EGFR agents include cetuximab, panitumumab, nimotuzumab, gefitinib, 
and erlotinib. Since EGFR overexpression was observed in GC, which was shown to be 
associated with poor prognosis [37,38], several trials investigating EGFR as a target for the 
treatment of GC were conducted.

Nevertheless, despite several favorable phase II results [39-43], a phase III trial of cetuximab 
as first-line treatment (EXPAND) failed to reach the primary end point (HR, 1.09; 95% CI, 
0.92–1.29; P=0.320) [44].

A phase III trial of panitumumab as first-line treatment (REAL3) reduced OS (HR, 1.37; 95% 
CI, 1.07–0.76; P=0.013) [45]. A phase III study of the efficacy of nimotuzumab as second-line 
treatment in advanced or recurrent GC was prematurely terminated because of the lack of a 
positive outcome in the mid-term follow-up (NCT01813253, ENRICH).

ANTI-ANGIOGENESIS

Angiogenesis is a mechanism of neovascularization from previously existing vessels known to 
promote carcinogenesis and cancer metastasis [46,47]. VEGF gene family proteins, including 
VEGFA, B, C, and D, and placental growth factor are signal proteins that induce angiogenesis 
and lymphangiogenesis [48]. Receptors of this gene family, designated as VEGFR1, R2, and 
R3, are types of RTKs usually expressed in lymphatic or vascular endothelial (VE) cells [46]. 
Among these receptors, VEGFR2 is the main effector of RTK and mediates downstream 
signaling cascades, including the phospholipase C-γ-protein kinase C-MEK-MAPK pathway 
and PI3K-Akt-endothelial nitric oxide synthase pathway [46,49,50]. VEGF overexpression is 
frequently found in GC patients and is closely associated with poor clinical outcomes [51].

Bevacizumab
Bevacizumab is a monoclonal antibody targeting VEGFA and is approved by the FDA for the 
treatment of colorectal cancer. In the phase III Avastin in Gastric Cancer (AVAGAST) trial, 774 
patients with GC were randomized to receive fluoropyrimidine+cisplatin with bevacizumab or 
placebo as first-line treatment [52]. In terms of OS, there was no significant difference between 
the 2 groups (HR, 0.87; 95% CI, 0.73–1.03; P=0.100). However, bevacizumab was efficacious in 
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terms of PFS (HR, 0.80; 95% CI, 0.68–0.93; P=0.004) and overall response rate (ORR) (46% vs. 
37%; P=0.032). Strangely, results of this study showed a geographical variation; OS significantly 
improved with bevacizumab in Europe and America, but not in Asia. One of the reasons for 
failure in Asia is that the efficacy of bevacizumab as first-line treatment in OS was compromised 
as many patients in Asia receive second-line and additional treatments. Another phase III trial 
on bevacizumab (AVATAR), which was conducted in China, also failed to show an improvement 
in OS (HR, 1.11; 95% CI, 0.79–1.56; P=0.557) [53].

Ramucirumab
The efficacy of ramucirumab, a monoclonal antibody targeting VEGFR2 [54], has been 
investigated as second-line treatment for GC patients in 2 phase III trials (REGARD and 
RAINBOW) [9,55]. In the REGARD trial, a slight improvement in OS was obtained by 
ramucirumab monotherapy compared with placebo, validating VEGFR2 as a crucial target 
in GC (HR, 0.77; 95% CI, 0.60–0.99; P=0.047). In the subsequent RAINBOW trial, 665 
GC patients who failed to respond to first-line chemotherapy, including fluoropyrimidine 
and platinum, were randomized to receive ramucirumab+paclitaxel or placebo+paclitaxel 
treatment. OS was significantly longer in the paclitaxel+ramucirumab group than in the 
placebo+paclitaxel group (HR, 0.80; 95% CI, 0.67–0.96; P=0.017), and the FDA approved 
ramucirumab in GC patients exhibiting disease progression with first-line treatment. As 
a result, a phase III trial evaluating the efficacy of ramucirumab as first-line treatment in 
metastatic GC is ongoing (NCT02314117, RAINFALL).

TKIs targeting VEGFR2
Apatinib is a small-molecule TKI inhibiting VEGFR2 tyrosine kinase. In a multicenter 
phase III trial conducted in China, GC patients who were refractory to at least 2 prior 
lines of standard chemotherapies were randomized to receive apatinib or placebo [10]. OS 
significantly increased in the apatinib group (HR, 0.71; 95% CI, 0.54–0.94; P<0.016), and 
apatinib was approved only in China. Another multicenter phase III study investigating 
apatinib efficacy in advanced or metastatic GC patients who were refractory to at least 2 prior 
treatments is ongoing (NCT03042611, ANGEL).

Regorafenib is an oral multi-kinase inhibitor, which blocks angiogenic (VEGFR2 and 
endothelial-specific type 2), stromal (platelet-derived growth factor-β), and oncogenic (RAF, 
RET, and KIT) RTKs. Regorafenib has been proven effective in GC cell xenograft models [56] 
and in a phase II trial (HR, 0.40; 95% CI, 0.28–0.59; P<0.001) [57]. Based on these results, 
a multicenter phase III trial of regorafenib efficacy in refractory advanced GC is ongoing 
(NCT02773524, INTEGRATEII).

OTHER TARGET-SPECIFIC AGENTS

The protein c-MET, an RTK regulating cell proliferation and invasion, and its ligand, hepatocyte 
growth factor (HGF), activates downstream signaling cascades, including MAPK and PI3K-Akt 
pathways. MET gene amplification is observed in about 10%–20% of GC patients, and increased 
MET protein expression is observed in approximately 50% of GC patients [58,59]. Furthermore, 
in a phase Ib/II trial, rilotumumab, an anti-HGF antibody was shown to be effective in MET-
positive GC patients [60]. However, 2 phase III trials of rilotumumab (RILOMET-1 and 
RILOMET-2) failed to reach the primary endpoint [61,62]. A phase III study of onartuzumab, a 
monoclonal antibody targeting c-MET, also failed to improve OS [63].
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The mTOR inhibitor everolimus was shown to be effective in GC patients in a phase II study; 
however, a phase III study (GRANITE-1) of this drug failed to show efficacy [64,65]. The 
combination of a TKI targeting fibroblast growth factor receptor (FGFR) 1–3, AZD4547, and 
paclitaxel also lacked efficacy as the second-line treatment of FGFR2-amplified GC in a phase 
II trial (SHINE) [66]. A poly-ADP ribose polymerase inhibitor, olaparib, was evaluated as 
a treatment for advanced GC in a phase III trial (NCT01924533, GOLD), but failed to show 
efficacy [67]. Phase III randomized clinical trials with target-specific agents are summarized 
in Table 1.

IMMUNOTHERAPY

A tumor cell is recognized by and is vulnerable to the host immune system. Classical reports 
of animal models have indicated that the immune system recognizes and eliminates tumor 
cells [68]. However, via elimination, equilibrium, and finally escape, cancer cells become 
invisible to the host [68]. Understanding the mechanism associated with immune escape led 
to the advancement of the field of immuno-oncology and the development of several target-
specific agents, including anti-cytotoxic T-lymphocyte antigen 4 (CTLA-4) antibodies and 
programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors (Fig. 1).

The activation of tumoricidal immune reactions requires the presentation of cancer antigens 
to T cells by either dendritic or cancer cells [69]. These interactions are regulated by a 
combination of co-stimulatory and inhibitory molecules [70]. CTLA-4 is an inhibitory 
receptor molecule expressed on cytotoxic T cells, and coordinates with CD80 or CD86 on 
antigen-presenting cells to suppress the cytotoxic activity of T cells. However, the binding 
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Table 1. Phase III randomized clinical trials of targeted therapies
Study Target Regimen Line Primary endpoint Results
ToGA HER2 Trastuzumab/placebo (+XP) First OS HR, 0.74; 95% CI, 0.6–0.91; P=0.005/positive
JACOB HER2 Pertuzumab/placebo 

(+trastuzumab+cisplatin+5FU)
First OS Ongoing/NCT01774786

LOGiC HER2, EGFR Lapatinib/placebo (+CapeOx) First OS HR, 0.91; 95% CI, 0.73–1.12; P=0.350/negative
TyTAN HER2, EGFR Lapatinib/placebo (+paclitaxel) Second OS HR, 0.84; 95% CI, 0.64–1.11; P=0.104/negative
GATSBY HER2 T-DM1 vs. taxane Second OS HR, 1.15; 95% CI, 0.89–1.43; P=0.860/negative
AVAGAST VEGFA Bevacizumab/placebo (+XP) First OS HR, 0.87; 95% CI, 0.73–1.03; P=0.100/negative
AVATAR VEGFA Bevacizumab/placebo (+XP) First OS HR, 1.11; 95% CI, 0.79–1.56; P=0.557/negative
REGARD VEGFR2 Ramucirumab vs. placebo Second OS HR, 0.776; 95% CI, 0.603–0.998; P=0.047/positive
RAINBOW VEGFR2 Ramucirumab/placebo (+paclitaxel) Second OS HR, 0.807; 95% CI, 0.678–0.962; P=0.017/positive
RAINFALL VEGFR2 Ramucirumab/placebo (+XP) First PFS Ongoing/NCT02314117
Li et al. [10] VEGFR2 Apatinib vs. placebo Third OS HR, 0.71; 95% CI, 0.54–0.94; P<0.016/positive
ANGEL VEGFR2 Apatinib vs. placebo Third OS Ongoing/NCT03042611
INTEGRATEII Multi-kinase inhibitor Regorafenib vs. placebo Third OS Ongoing/NCT02773524
EXPAND EGFR Cetuximab/placebo (+XP) First PFS HR, 1.09; 95% CI, 0.92–1.29; P=0.320/negative
REAL3 EGFR Panitumumab/placebo (+EOC) First OS HR, 1.37; 95% CI, 1.07–0.76; P=0.013/negative
ENRICH EGFR Nimotuzumab/placebo (+irinotecan) Second OS Prematurely terminated/NCT01813253
RILOMET-1 HGF Rilotumumab/placebo (+ECX) First OS Prematurely terminated/NCT01697072
RILOMET-2 HGF Rilotumumab/placebo (+CX) First OS, PFS Prematurely terminated/NCT02137343
METGastric c-MET Onartuzumab/placebo (+FOLFOX) First OS Prematurely terminated/NCT01662869
GRANITE-1 mTOR Everolimus vs. placebo Second OS HR, 0.90; 95% CI, 0.75–1.08; P=0.124/negative
GOLD Poly-ADP ribose 

polymerase
Olaparib/placebo (+paclitaxel) Second OS Prematurely terminated/NCT01924533

HER2 = human epidermal growth factor receptor 2; XP = capecitabine+cisplatin; OS = overall survival; HR = hazard ratio; CI = confidence interval; 5FU = 5-fluorouracil; 
EGFR = epidermal growth factor receptor; CapeOx = capecitabine+oxaliplatin; T-DM1 = trastuzumab-emtansine; VEGFA = vascular endothelial growth factor A; VEGFR2 
= vascular endothelial growth factor receptor 2; PFS = progression-free survival; EOC = epirubicin+oxaliplatin+capecitabine; HGF = hepatocyte growth factor; ECX = 
epirubicin+cisplatin+capecitabine; CX = cisplatin+capecitabine; FOLFOX = 5-fluorouracil+leucovorin+oxaliplatin; mTOR = mammalian target of rapamycin.
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of CD28, a co-stimulatory receptor on T cells, to CD80 or CD86 by competing with CTLA-
4 increases the tumoricidal activity of T cells [71]. PD-1 is another inhibitory cell surface 
receptor expressed on antigen-specific CD8+ T cells; it binds to PD-L1 or PD-L2 on antigen-
presenting cells to suppress host immune response, including T cell effector functions, 
migration, and proliferation [72]. Because PD-L1 is not only expressed on dendritic cells, 
macrophages, mast cells, and natural killer cells, it is also boosted by the cancer cell per 
se. Therefore, a PD-1/PD-L1 blockade is expected to enhance early immune reactions in 
lymphoid organs to late reactions at other locations [73].

For over a decade, the field of immuno-oncology has been in the spotlight owing to 
innovative practice-changing successes [74]. The therapeutic milestones involved 
melanomas, genitourinary cancers, lung cancers, and head & neck cancers. As a result, 
several trials on gastrointestinal cancers are ongoing.

Clinical trials of immune checkpoint inhibitors
Clinical trials investigating immune checkpoint inhibitors are summarized in Table 2.

The multicenter open-label phase Ib KEYNOTE 012 trial of pembrolizumab was conducted in 
several cancers, including GC, triple-negative breast cancer, head & neck cancer, and urothelial 
cancer. Out of 39 patients with GC included in this study, overall response was observed in 
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Fig. 1. Immune checkpoint inhibitors and their targets, including ligands and receptors on tumor cells, T cells, and dendritic cell surfaces. 
CTLA-4 = cytotoxic T-lymphocyte antigen 4; PD-1 = programmed death 1; PD-L1 = programmed death-ligand 1.
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8 patients (22%; 95% CI, 10–39). Considering that most patients in this group had failed to 
respond to 2 or more prior treatments, the median OS of 11 months documented in this study 
was a remarkable result [75]. An international open-label phase II trial of pembrolizumab in 2 
cohorts (patients who had failed to respond to 2 or more prior treatments and treatment-naïve 
patients) was performed, and the ORR was 13.3% (95% CI, 8.2–20.2) (NCT02335411, KEYNOTE 
059). Based on the study findings, the FDA approved pembrolizumab for patients with PD-L1-
positive recurrent or advanced GC, who previously received 2 or more chemotherapy regimens. 
There are 3 phase III, randomized, open-label trials of pembrolizumab, including KEYNOTE 
061, KEYNOTE 062, and KEYNOTE 063 (NCT02370498, NCT02494583, and NCT03019588, 
respectively). KEYNOTE 061 trial investigated the efficacy of pembrolizumab versus paclitaxel 
as second-line treatment in patients with PD-L1-positive advanced GC who were refractory 
to fluoropyrimidine and platinum doublet therapy (NCT02370498). The KEYNOTE 062 
trial, which investigated pembrolizumab as the first-line treatment, enrolled patients with 
HER2-negative, PD-L1-positive advanced GC, and randomly assigned participants into 3 
treatment arms: pembrolizumab monotherapy, perbrolizumab+platinum+fluoropyrimidine, 
and placebo+platinum+fluoropyrimidine (NCT02494583). The KEYNOTE 063 trial compared 
the efficacy of treatment with pembrolizumab versus paclitaxel in Asian, PD-L1-positive 
patients with advanced GC who failed to respond to any combination treatment containing a 
fluoropyrimidine and a platinum agent (NCT03019588).

A phase I/II trial investigating the combination of an anti-PD-1 antibody nivolumab with 
an anti-CTLA-4 antibody ipilimumab in patients with advanced or metastatic solid tumors 
is underway (NCT01928394, CHECKMATE 032). A randomized, multicenter, open-label 
phase III trial of nivolumab+ipilimumab or nivolumab+oxaliplatin+fluoropyrimidine versus 
oxaliplatin+fluoropyrimidine in patients with treatment-naïve metastatic or advanced GC is 
also ongoing (NCT02872116, CHECKMATE 649).

The ATTRACTION-2 study was the first randomized, multicenter, double blind, phase III trial 
demonstrating the efficacy of immunotherapy in unresectable or recurrent GC patients [76]. 
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Table 2. Clinical trials investigating immune checkpoint inhibitors
Study (phase) Target Regimen Line Primary endpoint Results
- (II) CTLA-4 Tremelimumab Second ORR, toxicities ORR 8%/negative
NCT01585987 (II) CTLA-4 Ipilimumab vs. placebo First irPFS HR, 1.439; 95% CI, 1.085–1.908; 

P=0.097/negative
KEYNOTE 059 (II) PD-1 Pembrolizumab vs. pembrolizumab+5FU+cisplatin First ORR Ongoing/NCT02335411
KEYNOTE 061 (III) PD-1 Pembrolizumab vs. paclitaxel Second OS, PFS Ongoing/NCT02370498
KEYNOTE 062 (III) PD-1 Pembrolizumab vs. 

pembrolizumab+cisplatin+fluoropyrimidine vs. 
cisplatin+fluoropyrimidine

First OS, PFS Ongoing/NCT02494583

KEYNOTE 063 (III) PD-1 Pembrolizumab vs. paclitaxel Second OS, PFS Ongoing/NCT03019588
JAVELIN Gastric 100 (III) PD-L1 Avelumab vs. continuation of chemotherapy First OS Ongoing/NCT02625610
JAVELIN Gastric 300 (III) PD-L1 Avelumab vs. physician's choice of chemotherapy Third OS Ongoing/NCT02625623
- (Ib/II) PD-L1, CTLA-4 Durvalumab/placebo (+tremelimumab) First ORR Ongoing/NCT02340975
CHECKMATE 032 (I/II) PD-1, CTLA-4 Ipilimumab/placebo (+nivolumab) - ORR Ongoing/NCT01928394
CHECKMATE 649 (III) PD-1, CTLA-4 Nivolumab+ipilimumab vs. 

nivolumab+oxaliplatin+fluoropyrimidine vs. 
oxlaliplatin+fluoropyrimidine

First OS Ongoing/NCT02872116

ATTRACTION-2 (III) PD-1 Nivolumab vs. placebo Third OS HR, 0.63; 95% CI, 0.50–0.78; 
P<0.001/positive

ONO-4538-37 (II/III) PD-1 Nivolumab/placebo (+CapeOx) First OS, PFS Ongoing/NCT02746796
CTLA-4 = cytotoxic T-lymphocyte antigen 4; ORR = overall response rate; irPFS = immune-related progression-free survival; 5FU = 5-fluorouracil; HR = hazard 
ratio; CI = confidence interval; PD-1 = programmed death 1; OS = overall survival; PFS = progression-free survival; PD-L1 = programmed death-ligand 1; CapeOx = 
capecitabine+oxaliplatin.

http://clinicaltrials.gov/ct2/show/NCT02335411
http://clinicaltrials.gov/ct2/show/NCT02370498
http://clinicaltrials.gov/ct2/show/NCT02494583
http://clinicaltrials.gov/ct2/show/NCT03019588
http://clinicaltrials.gov/ct2/show/NCT02370498
http://clinicaltrials.gov/ct2/show/NCT02494583
http://clinicaltrials.gov/ct2/show/NCT03019588
http://clinicaltrials.gov/ct2/show/NCT01928394
http://clinicaltrials.gov/ct2/show/NCT02872116
https://jgc-online.org
http://clinicaltrials.gov/ct2/show/NCT01585987
http://clinicaltrials.gov/ct2/show/NCT02335411
http://clinicaltrials.gov/ct2/show/NCT02370498
http://clinicaltrials.gov/ct2/show/NCT02494583
http://clinicaltrials.gov/ct2/show/NCT03019588
http://clinicaltrials.gov/ct2/show/NCT02625610
http://clinicaltrials.gov/ct2/show/NCT02625623
http://clinicaltrials.gov/ct2/show/NCT02340975
http://clinicaltrials.gov/ct2/show/NCT01928394
http://clinicaltrials.gov/ct2/show/NCT02872116
http://clinicaltrials.gov/ct2/show/NCT02746796


In this study, 493 patients with GC refractory or intolerant to standard therapy were randomly 
assigned to receive nivolumab or placebo, and a significantly longer OS was observed in 
patients treated with nivolumab (HR, 0.63; 95% CI, 0.50–0.78; P<0.001). A randomized, 
multicenter, phase II/III trial comparing nivolumab+fluoropyrimidine+oxaliplatin versus 
placebo+fluoropyrimidine+oxaliplatin as first-line treatment for unresectable advanced or 
recurrent GC is ongoing (NCT02746796).

Potential predictive markers of immunotherapy in GC
Because of defects in DNA mismatch repair genes, cancers with microsatellite instability 
(MSI) possess a high number of mutations, and express numerous surface antigens 
for presentation to immune cells [77]. In recent studies, the increased burden of 
somatic mutations has led to the expression of numerous neoantigens, resulting in 
immunostimulation; patients with cancer having these features are expected to be optimal 
candidates for PD-1 blockade [78-80]. Indeed, MSI has been used as a predictive biomarker 
for immune checkpoint inhibitors in colorectal cancer [81]. However, the efficacy of 
immunotherapy in MSI GC, which is known to show comparatively better prognosis and is 
usually observed as distal GC, has not been evaluated [82]. Four patients with MSI GC were 
enrolled in the KEYNOTE 012 study [75]. A phase II study of nivolumab with or without 
ipilimumab to evaluate its efficacy in MSI-high gastrointestinal tumors is ongoing [83]. 
Immunotherapeutic approaches in patients with MSI GC remain to be proven.

Gene expression studies in melanoma patients enrolled in the KEYNOTE 001 trial have 
identified a few gene signatures, including interferon-gamma 10-gene and expanded-
immune 28-gene, as potential predictive markers of clinical response to pembrolizumab 
[84]. Interestingly, GC patients enrolled in the KEYNOTE 012 trial, harboring these gene 
signatures, showed improved survival [75,85]. These findings are expected to encourage 
further studies with larger populations to identify these signatures as potential predictive 
biomarkers of response to immune checkpoint inhibitors.

Epstein-Barr virus (EBV) infection is known to increase the risk of GC by 10-fold, and 
EBV cancers account for approximately 10% of all GC cases [86,87]. Interestingly, several 
studies have indicated that the PD-L1 gene is amplified more frequently in EBV-positive 
cancers than in EBV-negative cancers, suggesting that EBV GC is another possible target 
of immunotherapeutic agents [88,89]. In addition, PD-L1-overexpressing EBV-positive GC 
shows upregulated interferon adaptive immune response [90], and is associated with an 
increased infiltration of immune cells into tumors [89]. Furthermore, tumor infiltration of 
immune cells was significantly associated with disease-free intervals in EBV GC, suggesting 
cellular immune response as a useful prognostic marker in this group [91]. In the KEYNOTE 
012 trial, no EBV infection data were collected [75].

Approximately 50% of GC cases are thought originate due to Helicobacter pylori infection [92]. 
H. pylori infection triggers inflammation, resulting in altered gastric microenvironment, 
accelerated cancer cell transformation, and immune cell infiltration. In addition, H. pylori 
infection induces DNA methylation in tumor suppressor genes, and increases the levels of 
inflammation-related proteins, including tumor necrosis factor-alpha [93]. Many studies 
have reported T cell anergy during H. pylori infection [94-96]. Furthermore, H. pylori infection 
upregulates PD-L1 expression in gastric epithelial cell lines [96]. Based on these findings, 
it might be hypothesized that H. pylori-related GC may respond well to immune checkpoint 
inhibitors, which remains to be proven.
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In GC with chromosomal instability (CIN) and genomic stability (GS), there is no 
overexpression of PD-L1/2 or high loads of mutations, which suggests that these subgroups 
are less likely to be responsive to immunotherapy compared with other GC subtypes [80]. 
GCs are not associated with hyper-mutations but show aberrations in the CHD1, ARID1A, 
and RHOA genes, which are related to epithelial-mesenchymal transition. CIN GC usually 
occurs at the esophagogastric junction and has a tendency to harbor chromosomal deletions, 
alterations, and amplifications, resulting in abnormalities in genes, including EGFR, HER2, 
MET, RAS, BRAF, and VEGFR.

Future directions in immuno-oncology
Although trials on monotherapy with anti-CTLA-4 antibodies have been unsuccessful, PD-1/
PD-L1 axis inhibitors have shown promising results in patients with GC. A phase III study of 
nivolumab versus placebo (ATTRACTION-2) showed favorable results. CTLA-4 and PD-1/PD-
L1 axis interrupt lethal immune responses in cancer via reciprocal pathways [97], and several 
preclinical studies have shown possible synergistic effects of the combined checkpoint 
blockades [98-100]. Based on these findings, clinical trials on combination treatments 
containing nivolumab and ipilimumab have been conducted in malignant melanoma with 
favorable outcomes [101-103]. Therefore, several ongoing phase III studies evaluating the 
efficacies of PD-1/PD-L1 axis inhibitors and their combinations with anti-CTLA-4 inhibitors 
in GC patients are expected to yield significant findings with clinical implications.

In addition to the integration of immune checkpoint inhibitors, immunotherapy in 
combination with other target-specific agents could be considered. In a phase Ib study on 
renal cell carcinoma, pembrolizumab in combination with axitinib, an inhibitor of VEGFRs 
was found to be substantially effective [104]. Therefore, a phase III KEYNOTE 426 trial 
was started (NCT02853331). Accordingly, treatment with ramucirumab, a monoclonal 
antibody targeting VEGFR2, in conjunction with immune checkpoint inhibitors is a 
potential therapeutic strategy for GC. Recently, MEK inhibitors in conjunction with immune 
checkpoint inhibitors have been suggested to exert synergistic effects in microsatellite-stable 
(MSS) RAS mutant colorectal cancer; this combination is also a promising intervention in 
GC, which often involves the activation of the RAS-MEK-ERK pathway [105].

GC is a heterogeneous disease. Therefore, subpopulation studies investigating potential 
predictive markers, including EBV pattern, MSI status, and PD-L1 expression, are needed. 
However, diagnostic challenges for the evaluation of molecular mechanisms and difficulties 
associated with decreased sample size after filtering participants need to be addressed.

Cost-effective studies are crucial, given the lack of consensus regarding the ideal treatment 
duration and exorbitant costs of immunotherapeutic agents. To identify reliable therapeutic 
approaches, the identification of useful predictive biomarkers with credible diagnostic tools 
is crucial.

NEW DIRECTION OF CLINICAL TRIALS ON  
TARGET-SPECIFIC AGENTS
Considering that GC harbors a diverse range of genetic mutations and tend to carry high 
mutational loads [12,106,107], various target-specific agents may be investigated in GC 
treatment. However, as previously noted, only a few trials have been successful, resulting 
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in the lack of new standard therapies [8,9]. The possible reasons underlying the failures are 
summarized below.

First, patient selection was not based on validated predictive biomarkers. Several failed studies, 
including EXPAND, REAL3, and GRANITE-1, did not involve the selection of participants who 
are expected to benefit from the experimental drugs [44,45,65]. Compared with the ToGA trial 
[8] in which only patients with HER2 IHC3+ or FISH+ status were included, the TyTAN study 
[31] enrolled all patients with HER2 FISH+ status. As a result, 34% of the enrolled patients 
were expected to benefit less from HER2-targeting agents, according to the criteria used in 
the ToGA trial. Such inappropriately broad selections of patients were also performed in trials 
targeting c-MET, including the RILOMET-1 trial [61]. Although MET gene amplification by FISH 
was observed in about 10%–20% of GC cases [58,59], MET protein overexpression was found 
in more than 50% of patients enrolled in the RILOMET-1 study [61], in which MET protein 
expression was analyzed by IHC staining. MET protein level analysis by IHC is reported to be 
unreliable for meaningful biomarker examination [108], and any trial in which more than 50% 
of all screened patients are registered, is challenging to conduct successfully.

The inappropriate combination of drugs may be another reason. The REAL3 trial used triplet 
chemotherapy combinations, which consisted of epirubicin, oxaliplatin, and capecitabine 
(EOC) as a backbone regimen [45]. Clinical outcome with the combination of EOC and 
panitumumab was poorer than that with EOC only (HR, 1.37; 95% CI, 1.07–0.76; P=0.013). 
Since epirubicin-containing triplet combinations are generally associated with highly toxic 
side effects, target-specific agents in combination with these regimens are ordinarily thought 
to be inappropriate. Combinations of 2 small-molecule inhibitors or a small-molecule 
inhibitor along with a cytotoxic agent are also generally avoided because maximum tolerated 
doses of these regimens could be too low (due to high toxicities) to achieve target inhibition.

Tumor heterogeneity is the most important factor underlying the failure of single-target 
agents. Even in the case of trastuzumab, the only proven HER2-targeting agent, the 
therapeutic efficacy is markedly diversified depending on HER2 heterogeneity, and this 
diverse pattern of HER2 expression is more prevalent in GC than in breast cancer [24]. 
HER2 IHC3+ samples also showed a heterogeneous pattern of staining in more than 30% of 
cases [109]. Considering focal distribution, target-specific inhibitors are expected to work 
only against selected tumors. The disappearance of HER2 expression is also regarded as 
a major cause of trial failure. HER2 expression disappeared in about 30% of patients who 
underwent first-line treatment [110]. The GATSBY trial, which explored potential second-
line treatments in GC, involved the determination of the HER2 status of participants with 
tumor samples obtained prior to the first-line treatment [36]. The sequential loss of HER2 
expression affected the study results. A similar case of failure was reported in the SHINE 
study, investigating the TKI targeting FGFR1–3 [66].

A recent report demonstrated that target genes in GC are diversely distributed by using a 
specially-generated tissue microarray with a multitude of tissue cores from the primary tumor 
and various metastases [111]. This study suggested that a single clinical cancer biopsy could limit 
treatment decisions, and multiple biopsies might be needed for deciding the most appropriate 
treatment plan. Furthermore, with rapid advances in next generation sequencing technologies, 
systematic analyses of therapeutic targets in GC are promising [112]. In terms of concerns about 
sequential alterations of gene targets, the real-time monitoring of primary tumor entities by 
analyzing circulating tumor cells from patient blood samples could be helpful [113].
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CONCLUSIONS

Clinical outcomes in GC patients may be improved via appropriately designed clinical 
studies. Appropriate target selection and patient inclusion criteria are essential; however, 
tumor heterogeneity of GC remains an obstacle even with fine targets serving as driver 
mutations. Therefore, clinical trials investigating a single target are of little importance in 
predicting GC treatment outcome; accordingly, several studies have been unsuccessful over 
the past decade. A combination of several target-specific agents may be considered. However, 
the maximum tolerated doses of combinations determined by phase I study may not be 
adequate for target inhibition. Nevertheless, whether successful combinations of 2 or more 
target-specific agents can overcome this challenge is yet to be established.

In contrast to target-specific agents, immuno-oncologic agents are designed to regulate 
and boost anti-cancer immunity, without the need for targets and may overcome tumor 
heterogeneity. Among immuno-oncologic therapies, including cancer vaccines, oncolytic 
viruses, and chimeric antigen receptors, immune checkpoint inhibitors are the mainstay of 
clinical interventions in GC trials. MSI GC, bearing high loads of mutations, and EBV-related 
GC, overexpressing PD-L1, may be ideal candidates for immune checkpoint inhibitors. Based 
on other data, a checkpoint blockade is not excluded in patients even with MSS or PD-L1-
negative GC. Recent data support that checkpoint inhibition in combination with MEK 
inhibitors may be associated with synergistic effects in RAS mutant MSS colorectal cancer 
[105]. In CIN GC carrying mutations of EGFR, HER2, or VEGFR, antibodies targeting HER2 
or VEGFR2 in conjunction with immunotherapy are attractive therapeutic options.

Major challenges in GC management can be overcome via appropriate patient selection, 
the effective combination of drugs, and proper sequential treatment. Further efforts are 
imperative to explore and validate useful predictive biomarkers, which are crucial for patient 
selection. Preclinical studies exploring ideal combinations of drugs are also needed. Despite 
gaps in the currently available data, further studies in this direction may establish the new 
frontier in GC treatment.
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